【BZOJ3669】【NOI2014】魔法森林 LCT
题目描述
给你一个\(n\)个点\(m\)条边的图,每条边有两个边权\(a,b\)。请你找出从\(1\)到\(n\)一条路径,使得这条路径上边权\(a\)的最大值\(+\)边权\(b\)的最大值最小。
\(n\leq 50000,m\leq 100000\)
题解
我们可以考虑求出当边权\(a\leq\)某个数时边权\(b\)的最大值。
先把边按边权\(a\)从小到大排序,依次加入,用LCT维护当前边权\(b\)的最小生成树。如果这两个点已经联通,就判断这两个点路径上边的边权\(b\)的最大值,如果大于当前这条边的边权\(b\),就把这条边删掉。否则就不加入这条边。
每加完一条边我们就可以认为从\(1\)到\(n\)的边权\(a\)的最大值为当前这条边的边权\(a\)(否则就会在之前更新到),然后查询\(1\)到\(n\)的边权\(b\)的最大值,更新答案。
时间复杂度:\(O(m\log n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
namespace lct
{
int a[200010][2];
int f[200010];
pii v[200010];
pii s[200010];
int r[200010];
int root(int x)
{
return !f[x]||(a[f[x]][0]!=x&&a[f[x]][1]!=x);
}
void reverse(int x)
{
swap(a[x][0],a[x][1]);
r[x]^=1;
}
void push(int x)
{
if(r[x])
{
if(a[x][0])
reverse(a[x][0]);
if(a[x][1])
reverse(a[x][1]);
r[x]=0;
}
}
void mt(int x)
{
s[x]=max(v[x],max(s[a[x][0]],s[a[x][1]]));
}
void rotate(int x)
{
if(root(x))
return;
int p=f[x];
int q=f[p];
int ps=(x==a[p][1]);
int qs=(p==a[q][1]);
int ch=a[x][ps^1];
if(!root(p))
a[q][qs]=x;
a[x][ps^1]=p;
a[p][ps]=ch;
if(ch)
f[ch]=p;
f[p]=x;
f[x]=q;
mt(p);
mt(x);
}
void clear(int x)
{
if(!root(x))
clear(f[x]);
push(x);
}
void splay(int x)
{
clear(x);
int p,q;
while(!root(x))
{
p=f[x];
if(!root(p))
{
q=f[p];
if((p==a[q][1])==(x==a[p][1]))
rotate(p);
else
rotate(x);
}
rotate(x);
}
}
void access(int x)
{
int y=x,t=0;
while(x)
{
splay(x);
a[x][1]=t;
mt(x);
t=x;
x=f[x];
}
splay(y);
}
void change(int x)
{
access(x);
reverse(x);
}
int findroot(int x)
{
access(x);
while(a[x][0])
x=a[x][0];
splay(x);
return x;
}
pii query(int x,int y)
{
change(x);
access(y);
return s[y];
}
void link(int x,int y)
{
change(x);
f[x]=y;
}
void cut(int x,int y)
{
change(x);
access(y);
f[a[y][0]]=0;
a[y][0]=0;
mt(y);
}
}
struct edge
{
int x,y;
int a,b;
};
edge a[100010];
int cmp(edge a,edge b)
{
return a.a<b.a;
}
int main()
{
// freopen("bzoj3669.in","r",stdin);
// freopen("bzoj3669.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=m;i++)
scanf("%d%d%d%d",&a[i].x,&a[i].y,&a[i].a,&a[i].b);
sort(a+1,a+m+1,cmp);
int ans=0x7fffffff;
for(i=1;i<=m;i++)
{
if(a[i].x==a[i].y)
continue;
if(lct::findroot(a[i].x)==lct::findroot(a[i].y))
{
pii s=lct::query(a[i].x,a[i].y);
if(a[i].b>=a[s.second].b)
continue;
lct::cut(s.second+n,a[s.second].x);
lct::cut(s.second+n,a[s.second].y);
}
lct::v[i+n]=pii(a[i].b,i);
lct::link(a[i].x,i+n);
lct::link(a[i].y,i+n);
if(lct::findroot(1)==lct::findroot(n))
ans=min(ans,a[i].a+lct::query(1,n).first);
}
if(ans==0x7fffffff)
ans=-1;
printf("%d\n",ans);
return 0;
}
【BZOJ3669】【NOI2014】魔法森林 LCT的更多相关文章
- bzoj3669: [Noi2014]魔法森林 lct版
先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...
- bzoj3669: [Noi2014]魔法森林 lct
记得去年模拟赛的时候好像YY出二分答案枚举a,b的暴力,过了55欸 然后看正解,为了将两维变成一维,将a排序,模拟Kruskal的加边过程,同时维护1到n的最大值,加入一条边e(u,v,a,b)时有以 ...
- [bzoj3669][Noi2014]魔法森林——lct
Brief description 给定一个无向图,求从1到n的一条路径使得这条路径上最大的a和b最小. Algorithm Design 以下内容选自某HN神犇的blog 双瓶颈的最小生成树的感觉, ...
- BZOJ 3669: [Noi2014]魔法森林( LCT )
排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...
- bzoj 3669: [Noi2014]魔法森林 (LCT)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3669 题面: 3669: [Noi2014]魔法森林 Time Limit: 30 Sec ...
- [NOI2014]魔法森林 LCT
题面 [NOI2014]魔法森林 题解 一条路径的代价为路径上的\(max(a[i]) + max(b[i])\),因为一条边同时有$a[i], b[i]$2种权值,直接处理不好同时兼顾到,所以我们考 ...
- loj2245 [NOI2014]魔法森林 LCT
[NOI2014]魔法森林 链接 loj 思路 a排序,b做动态最小生成树. 把边拆成点就可以了. uoj98.也许lct复杂度写假了..越卡常,越慢 代码 #include <bits/std ...
- 【BZOJ3669】[Noi2014]魔法森林 LCT
终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...
- BZOJ3669[Noi2014]魔法森林——kruskal+LCT
题目描述 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住 ...
- BZOJ3669: [Noi2014]魔法森林(瓶颈生成树 LCT)
Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 3558 Solved: 2283[Submit][Status][Discuss] Descript ...
随机推荐
- 如何在Github中删除已有仓库或文件
一.删除已有仓库如果我们想要删除Github中没有用的仓库,应该如何去做呢? 进入到我们需要删除的仓库里面,找到“settings”即仓库设置: 然后,在仓库设置里拉到最底部,找到“Danger Zo ...
- git的用法步骤讲解
1.创建全局的本地用户名 git config --global user.name "teamemory" git config --global user.email &quo ...
- PS调出春夏外景婚纱照
效果图 先来看看原图和夏季的效果图 先看看原图 教程终于来咯 原图暗部太深,需要将暗部提亮.可以把暗部选区选出来.为了精确选择暗部选区,我利用计算命令如上图所示.最后得到暗部的选区. 上图得到了暗部选 ...
- iOStextField/textView在输入时限制emoji表情的输入
https://www.jianshu.com/p/5227e6aab4d4 2017.02.27 13:08* 字数 146 阅读 6109评论 6喜欢 14 又遇到输入框输入表情的情况了,之前写了 ...
- 【问题解决方案】editplus中批量将ANSI转换为utf-8
来自一个用editplus写java程序但是上传到GitHub里中文乱码的故事 大致步骤: editplus全部打开之后(打开为何种编码不重要): (全部打开是指在左下方的文件列表选中-->右击 ...
- jquery操作复选框(checkbox)的一些小技巧总结
1.获取单个checkbox选中项(三种写法) //第一种 $("input:checkbox:checked").val() //第二种 $("input:[type= ...
- C#的修饰符
C#的修饰符 废话少说,直接上总结: 一.在命名空间下: 类:默认修饰符为internal 接口:默认的修饰符为internal 结构体:默认的修饰符为internal 枚举:默认的修饰符为inter ...
- Redis 使用命令行的方式 获取 hash type key 的value值
1. 之前只是非常简单的看了下 get key 和 set key 但是这样 设置的 key value 应该是都 string 类型的 2. 但是没考虑过其他类型的 是如何获取 相关内容的 ,一直 ...
- 下拉框插件select2的使用
它的优点有: 样式还算好看,支持多选,支持索搜 下面来介绍下select2的用法 1.最简单的用法 只需要加载css和js即可使用 <select name="" id=&q ...
- laravel实现批量添加数据
在使用laravel eloquent进行数据库操作的时候惊讶的发现这货居然不支持批量添加,看到网上很多人在循环里进行数据库插入操作来实现批量添加,我想说这样做是很损失性能滴!好在框架的DB门面里的i ...