poj2396 Budget&&ZOJ1994 Budget[有源汇上下界可行流]
Budget
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge
We are supposed to make a budget proposal for this multi-site competition. The budget proposal is a matrix where the rows represent different kinds of expenses and the columns represent different sites. We had a meeting about this, some time ago where we discussed the sums over different kinds of expenses and sums over different sites. There was also some talk about special constraints: someone mentioned that Computer Center would need at least 2000K Rials for food and someone from Sharif Authorities argued they wouldn't use more than 30000K Rials for T-shirts. Anyway, we are sure there was more; we will go and try to find some notes from that meeting.
And, by the way, no one really reads budget proposals anyway, so we'll just have to make sure that it sums up properly and meets all constraints.
Input
The first line of the input contains an integer N, giving the number of test cases. The next line is empty, then, test cases follow: The first line of each test case contains two integers, m and n, giving the number of rows and columns (m <= 200, n <= 20). The second line contains m integers, giving the row sums of the matrix. The third line contains n integers, giving the column sums of the matrix. The fourth line contains an integer c giving the number of constraints. The next c lines contain the constraints. There is an empty line after each test case.
Each constraint consists of two integers r and q, specifying some entry (or entries) in the matrix (the upper left corner is 1 1 and 0 is interpreted as "ALL", i.e. 4 0 means all entries on the fourth row and 0 0 means the entire matrix), one element from the set {<, =, >} and one integer v, with the obvious interpretation. For instance, the constraint 1 2 > 5 means that the cell in the 1st row and 2nd column must have an entry strictly greater than 5, and the constraint 4 0 = 3 means that all elements in the fourth row should be equal to 3.
Output
For each case output a matrix of non-negative integers meeting the above constraints or the string "IMPOSSIBLE" if no legal solution exists. Put one empty line between matrices.
Sample Input
2
2 3
8 10
5 6 7
4
0 2 > 2
2 1 = 3
2 3 > 2
2 3 < 5
2 2
4 5
6 7
1
1 1 > 10
Sample Output
2 3 3
3 3 4
IMPOSSIBLE
Source: Asia 2003, Tehran (Iran), Preliminary
【分析】:
首先建图不难
每一行的和为x,S到每行连[x,x]的边
每一列的和为y,每列到T连[y,y]的边
对于一个点i,j,i行向j列连[l,r]的边
然后正常的有源上下界网络流
还要处理输入自身的矛盾
注意初始化,并且l和r初始为+-1000即可,否则可能爆long long
注意输入是>和<,不能理解为>=和<=
注意数组大小
注意测试数据有负数
注意读完数据,不能读入过程中发现矛盾就退出了,有人说似乎读入每组数据最后要读入一个空行
=========================================
QAQ搞了一下午
还有谁跑的比我快?
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int Z=300,N=1e4+5,M=1e5+5;
const int inf=2e9;
struct edge{int v,next,cap;}e[M];int tot=1,head[N];
int n,m,k,cas,sum,S,T,SS,TT,in[N],dis[N],dn[Z][Z],up[Z][Z],q[M];bool flag;
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add(int x,int y,int z){
e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=0;e[tot].next=head[y];head[y]=tot;
}
bool bfs(int S,int T){
memset(dis,-1,sizeof dis);
int h=0,t=1;q[t]=S;dis[S]=0;
while(h!=t){
int x=q[++h];
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==-1){
dis[e[i].v]=dis[x]+1;
if(e[i].v==T) return 1;
q[++t]=e[i].v;
}
}
}
return 0;
}
int dfs(int x,int T,int f){
if(x==T) return f;
int used=0,t;
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==dis[x]+1){
t=dfs(e[i].v,T,min(e[i].cap,f));
e[i].cap-=t;e[i^1].cap+=t;
used+=t;f-=t;
if(!f) return used;
}
}
if(!used) dis[x]=-1;
return used;
}
int dinic(int S,int T){
int res=0;
while(bfs(S,T)) res+=dfs(S,T,2e9);
return res;
}
void jud(int x,int y,int v){
if(v<dn[x][y]||v>up[x][y]) flag=1;
}
void Cl(){
tot=1;
memset(in,0,sizeof in);
memset(head,0,sizeof head);
for(int i=0;i<=n;i++){
for(int j=0;j<=n+m+1;j++){
dn[i][j]=0;
up[i][j]=30000;
}
}
}
void work(){
n=read();m=read();
while(n>200||m>20||n<=0||m<=0);
S=n+m+1;T=S+1;SS=S+2;TT=S+3;Cl();
for(int i=1,x;i<=n;i++) x=read(),add(S,i,0),in[S]-=x,in[i]+=x;
for(int i=1,x;i<=m;i++) x=read(),add(i+n,T,0),in[i+n]-=x,in[T]+=x;
k=read();char s[3];flag=0;
for(int i=1,x,y,z,f;i<=k;i++){
x=read();y=read();scanf("%s",s);z=read();
f=s[0]=='>'?0:s[0]=='<'?1:2;
if(x&&y){
if(!f){
dn[x][y+n]=max(z+1,dn[x][y+n]);
}
else if(f&1){
up[x][y+n]=min(z-1,up[x][y+n]);
}
else{
jud(x,y+n,z);
dn[x][y+n]=up[x][y+n]=z;
}
}
if(!x&&y){
if(!f){
for(int j=1;j<=n;j++){
dn[j][y+n]=max(z+1,dn[j][y+m]);
}
}
else if(f&1){
for(int j=1;j<=n;j++){
up[j][y+n]=min(z-1,up[j][y+m]);
}
}
else{
for(int j=1;j<=n;j++){
jud(j,y+n,z);
dn[j][y+n]=up[j][y+n]=z;
}
}
}
if(x&&!y){
if(!f){
for(int j=1;j<=m;j++){
dn[x][j+n]=max(z+1,dn[j][y+m]);
}
}
else if(f&1){
for(int j=1;j<=m;j++){
up[x][j+n]=min(z-1,up[j][y+m]);
}
}
else{
for(int j=1;j<=m;j++){
jud(x,j+n,z);
dn[x][j+n]=up[x][j+n]=z;
}
}
}
if(!x&&!y){
if(!f){
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
dn[j][k+n]=max(z+1,dn[j][k+n]);
}
}
}
else if(f&1){
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
up[j][k+n]=min(z-1,up[j][k+n]);
}
}
}
else{
for(int j=1;j<=n;j++){
for(int k=1;k<=m;k++){
jud(j,k+n,z);
dn[j][k+n]=up[j][k+n]=z;
}
}
}
}
}
for(int i=1;i<=n&&!flag;i++){
for(int j=1;j<=m;j++){
if(up[i][j+n]<dn[i][j+n]){flag=1;break;}
add(i,j+n,up[i][j+n]-dn[i][j+n]);
in[i]-=dn[i][j+n];
in[j+n]+=dn[i][j+n];
}
}
if(flag){puts("IMPOSSIBLE");return ;}
add(T,S,inf);sum=0;
for(int i=1;i<=T;i++){
if(in[i]>0) add(SS,i,in[i]),sum+=in[i];
if(in[i]<0) add(i,TT,-in[i]);
}
if(dinic(SS,TT)!=sum){puts("IMPOSSIBLE");return ;}
int now=S;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d",dn[i][j+n]+e[now<<1^1].cap);
if(j!=m) putchar(' ');
now++;
}
putchar('\n');
}
}
int main(){
cas=read();
for(;cas--;cas?putchar('\n'):1) work();
return 0;
}
poj2396 Budget&&ZOJ1994 Budget[有源汇上下界可行流]的更多相关文章
- POJ2396 Budget [有源汇上下界可行流]
POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...
- 有源汇上下界可行流(POJ2396)
题意:给出一个n*m的矩阵的每行和及每列和,还有一些格子的限制,求一组合法方案. 源点向行,汇点向列,连一条上下界均为和的边. 对于某格的限制,从它所在行向所在列连其上下界的边. 求有源汇上下界可行流 ...
- 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]
题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...
- poj2396 Budget(有源汇上下界可行流)
[题目链接] http://poj.org/problem?id=2396 [题意] 知道一个矩阵的行列和,且知道一些格子的限制条件,问一个可行的方案. [思路] 设行为X点,列为Y点,构图:连边(s ...
- poj2396有源汇上下界可行流
题意:给一些约束条件,要求算能否有可行流,ps:刚开始输入的是每一列和,那么就建一条上下界相同的边,这样满流的时候就一定能保证流量相同了,还有0是该列(行)对另一行每个点都要满足约束条件 解法:先按无 ...
- 算法复习——有源汇上下界可行流(bzoj2396)
题目: Description We are supposed to make a budget proposal for this multi-site competition. The budge ...
- ZOJ1994有源汇上下界可行流
http://fastvj.rainng.com/contest/236779#problem/G Description: n 行 m 列 给你行和 与 列和 然后有Q个限制,表示特定单元格元素大小 ...
- bzoj 2406 矩阵 —— 有源汇上下界可行流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2406 这题,首先把题目那个式子的绝对值拆成两个限制,就成了网络流的上下界: 有上下界可行流原 ...
- bzoj千题计划158:bzoj2406: 矩阵(有源汇上下界可行流)
http://www.lydsy.com/JudgeOnline/problem.php?id=2406 设矩阵C=A-B 最小化 C 一行或一列和的最大值 整体考虑一行或者一列的和 二分最大值 这样 ...
随机推荐
- 迅为4412开发板Linux驱动教程——总线_设备_驱动注冊流程具体解释
视频下载地址: 驱动注冊:http://pan.baidu.com/s/1i34HcDB 设备注冊:http://pan.baidu.com/s/1kTlGkcR 总线_设备_驱动注冊流程具体解释 • ...
- Python多线程1:threading
threading模块提供了高级别的线程接口,基于低级别的_thread模块实现. 模块基本方法 该模块定了的方法例如以下: threading.active_count() 返回当前 ...
- 【死磕Java并发】-----J.U.C之AQS:CLH同步队列
此篇博客全部源代码均来自JDK 1.8 在上篇博客[死磕Java并发]-–J.U.C之AQS:AQS简单介绍中提到了AQS内部维护着一个FIFO队列,该队列就是CLH同步队列. CLH同步队列是一个F ...
- Atitit.软件gui按钮and面板---通讯子系统(区)-- github 的使用....
Atitit.软件gui按钮and面板---通讯子系统(区)-- github 的使用.... 1. 1.注册账户以及创建仓库 1 2. 二.在GitHub中创建项目(create a new rep ...
- Delphi记录record中的变体
program Day4; {$APPTYPE CONSOLE} uses SysUtils, Util in 'Util.pas'; type TPerson = packed record ID ...
- ilmerge工具合并多个DLL或EXE
这是一个微软提供的合并多个DLL 或是将DLL合并进EXE的工具 首先下载这个工具:ilmerge http://www.microsoft.com/en-us/download/details.as ...
- Acquiring Heap Dumps
Acquiring Heap Dumps HPROF Binary Heap Dumps Get Heap Dump on an OutOfMemoryError One can get a HP ...
- lucene4.7学习总结 (zhuan)
http://blog.csdn.NET/mdcmy/article/details/38167955?utm_source=tuicool&utm_medium=referral ***** ...
- JAVA判断字符串相等
java中判断字符串是否相等有两种方法:1.用“==”运算符,该运算符表示指向字符串的引用是否相同,比如: String a="abc";String b="abc&qu ...
- python模块之XlsxWriter 详解
Xlsx是python用来构造xlsx文件的模块,可以向excel2007+中写text,numbers,formulas 公式以及hyperlinks超链接. 可以完成xlsx文件的自动化构造,包括 ...