题目:https://loj.ac/problem/2546

dp[ i ][ j ][ 0/1 ][ 0/1 ] 表示 i 子树,用 j 个点,是否用 i , i 是否被覆盖。

注意 s1<=s0 ,别弄出负角标。

用 if 判断一下,如果有值再转移,会快非常多。

复杂度是 O(n*k) 的。证明:https://www.cnblogs.com/cjyyb/p/10416839.html

先约定如果一个小于 k 的子树和一个大于 k 的子树合并,在小于 k 的子树那里看复杂度。

1.两个小于 k 的子树 cr 和 v 合并,且合并完之后还是小于 k 的;

  对于 cr 里的每个点,要和 v 的每个点产生贡献。虽然和很多 v 都这样做了,但这些 v 的大小加起来小于 k (因为规定合并完还是小于 k ),所以一个点贡献 O(k) 次。

  如果合并完大于 k ,就在 “一个小于 k 的子树和一个大于 k 的子树合并” 的部分考虑复杂度了。

2.一个小于 k 的子树 cr 和一个大于 k 的子树 v 合并。

  对于 cr 里的每个点,此时都要进行 O(k) 次贡献。合并完之后 cr 的大小变成大于 k ,所以这种贡献,每个点只会经历一次。

3.一个大于 k 的子树 cr 和一个大于 k 的子树 v 合并。

  产生 k2 的贡献。如果是两个大小为 k 的子树,合并之后大小变成 2*k ;再合并进来一个大小为 k 的,大小就变成 3*k ;即这种合并最多 \( \frac{n}{k} \) 次。

综上,复杂度是 O(n*k) 的。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
int Mx(int a,int b){return a>b?a:b;}
int Mn(int a,int b){return a<b?a:b;}
const int N=1e5+,M=,mod=1e9+;
int upt(int x){while(x>=mod)x-=mod;while(x<)x+=mod;return x;} int n,k,hd[N],xnt,to[N<<],nxt[N<<];
int siz[N],dp[N][M][][],tp[][];
void add(int x,int y){to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;}
void cz(int &x,int y){x=upt(x+y);}
void dfs(int cr,int fa)
{
dp[cr][][][]=dp[cr][][][]=; siz[cr]=;
for(int i=hd[cr],v;i;i=nxt[i])
if((v=to[i])!=fa)
{
dfs(v,cr);
for(int s0=Mn(k,siz[cr]+siz[v]);s0>=;s0--)
{
tp[][]=tp[][]=tp[][]=tp[][]=;
for(int s1=Mx(,s0-siz[cr]),lm=Mn(s0,Mn(siz[v],k));s1<=lm;s1++)
{
int d=s0-s1;
if(dp[cr][d][][])
{
cz(tp[][],(ll)dp[cr][d][][]*dp[v][s1][][]%mod);
cz(tp[][],(ll)dp[cr][d][][]*dp[v][s1][][]%mod);
}
if(dp[cr][d][][])
cz(tp[][],(ll)dp[cr][d][][]*(dp[v][s1][][]+dp[v][s1][][])%mod);
if(dp[cr][d][][])
{
cz(tp[][],(ll)dp[cr][d][][]*(dp[v][s1][][]+dp[v][s1][][])%mod);
cz(tp[][],(ll)dp[cr][d][][]*(dp[v][s1][][]+dp[v][s1][][])%mod);
}
if(dp[cr][d][][])
{
cz(tp[][],(ll)dp[cr][d][][]
*((ll)dp[v][s1][][]+dp[v][s1][][]+dp[v][s1][][]+dp[v][s1][][])%mod);
}
}
for(int f0=;f0<=;f0++)
for(int f1=;f1<=;f1++)
dp[cr][s0][f0][f1]=tp[f0][f1];
}
siz[cr]+=siz[v];
}
}
int main()
{
n=rdn();k=rdn();
for(int i=,u,v;i<n;i++)
u=rdn(),v=rdn(),add(u,v),add(v,u);
dfs(,);
printf("%d\n",upt(dp[][k][][]+dp[][k][][]));
return ;
}

LOJ 2546 「JSOI2018」潜入行动——树形DP的更多相关文章

  1. 【LOJ】#2546. 「JSOI2018」潜入行动

    题解 dp[i][j][0/1][0/1]表示以\(i\)为根的子树,用了\(j\)个,i点选了或者没选,i点被覆盖或没被覆盖 转移比较显然,但是复杂度感觉不太对? 其实转移到100个的时候就使第二维 ...

  2. LOJ 2550 「JSOI2018」机器人——找规律+DP

    题目:https://loj.ac/problem/2550 只会写20分的搜索…… #include<cstdio> #include<cstring> #include&l ...

  3. LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流

    题目:https://loj.ac/problem/2548 如果知道正多边形的顶点,就是二分答案.二分图匹配.于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( ...

  4. LOJ 2551 「JSOI2018」列队——主席树+二分

    题目:https://loj.ac/problem/2551 答案是排序后依次走到 K ~ K+r-l . 想维护一个区间排序后的结果,使得可以在上面二分.求和:二分可以知道贡献是正还是负. 于是想用 ...

  5. LOJ 2547 「JSOI2018」防御网络——思路+环DP

    题目:https://loj.ac/problem/2547 一条树边 cr->v 会被计算 ( n-siz[v] ) * siz[v] 次.一条环边会被计算几次呢?于是去写了斯坦纳树. #in ...

  6. LG4516/LOJ2546 「JSOI2018」潜入行动 树上背包

    问题描述 LG4516 LOJ2546 题解 好一个毒瘤题. hkk:JSOI的签到题 设\(opt[i][j][0/1][0/1]\)代表结点\(i\)的子树,放置\(j\)个,\(i\)放不放,\ ...

  7. LOJ 3092 「BJOI2019」排兵布阵 ——DP

    题目:https://loj.ac/problem/3092 同一个人的不同城堡之间没有什么联系,只是和<=m.所以对每个城堡的 s 个值排序,做一个 f[ i ][ j ] 表示第 i 个城堡 ...

  8. LG1131 「ZJOI2007」时态同步 树形DP

    问题描述 LG1131 题解 正难则反,把从一个点出发到叶子结点看做从叶子结点走到那个点. DP方程很显然. \(\mathrm{Code}\) #include<bits/stdc++.h&g ...

  9. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

随机推荐

  1. c语言cJson数组生成与解析

    1.生成 json char* CreatJsCustNo( BT_BNF_CUST *p, char *strPaperNO) { cJSON *pJsonArry,*pJsonsub; pJson ...

  2. 全文检索:haystack+elasticsearch

    优点: 1.查询速度快 2.支持中文分词准备工作:安装es软件 1.拷贝到ubuntu 2.docker load -i 文件路径 3.配置 修改ip地址 4.docker run -dti --ne ...

  3. angular面试记忆的内容

    1.ng-class的用法:ng-class="{red:true}"; 2.ng-repeat怎么可以添加重复数据.ng-repeat="item in arr tra ...

  4. 【SQL Server备份恢复】维护计划实现备份:每周数据库完整备份、每天差异备份、每小时日志备份

    在数据库管理中,数据库备份是非常重要的. 通过维护计划向导,可以很方便的完成数据库备份. 下面的例子说明了如何实现数据库的备份,具体的备份策略是:每周日一次完整备份.每天差异备份(除周日外).每小时日 ...

  5. FileProvider 添加二级目录

    我们在做Android N升级适配的时候 传统的Intent调用文件的方式会被认为不安全的 然后系统需要让我们使用更加安全的FileProvider的方法去构建intent请求 如 拍照,安装新的ap ...

  6. 『TensorFlow』读书笔记_进阶卷积神经网络_分类cifar10_上

    完整项目见:Github 完整项目中最终使用了ResNet进行分类,而卷积版本较本篇中结构为了提升训练效果也略有改动 本节主要介绍进阶的卷积神经网络设计相关,数据读入以及增强在下一节再与介绍 网络相关 ...

  7. 【转】前端的BFC、IFC、GFC和FFC

    什么是BFC.IFC.GFC和FFC CSS2.1中只有BFC和IFC, CSS3中才有GFC和FFC. FC的全称是:Formatting Contexts,是W3C CSS2.1规范中的一个概念. ...

  8. H5离线缓存技术

      HTML5提供了很多新的功能以及相应的接口,离线存储就是其中的一个,离线存储可以将站点的一些文件存储在本地,在没有网络的时候还是可以访问到以缓存的对应的站点页面,其中这些文件可以包括html,js ...

  9. SEH X86

    ( windows 提供的异常处理机制实际上只是一个简单的框架,一般情况下开发人员都不会直接用到.我们通常所用的异常处理(比如 C++ 的 throw.try.catch)都是编译器在系统提供的异常处 ...

  10. [SCOI2007]排列

    看了看数据范围...我艹...爆搜可过? 等等,冷静,让我看一眼题解...我艹...真可过... emm...再冷静分析...emm...还是写状压吧... 这题主要的思路就是 f[i][j] 表示 ...