https://blog.csdn.net/cs729298/article/details/68926969

ElasticSearch 的特点随处可见:基于 Lucene 的分布式搜索引擎,友好的 RESTful API……

大部分文章都围绕 ELK Stack 和全文搜索展开,本文试图用一个小案例来展示 ElasticSearch Aggregations 在统计分析的强大之处。

表单长这样

需求:对回收的问卷进行统计,统计方式可能有:

  • 看每周/天/小时回收量(可以做成可视化的柱状图,人人都爱 Dashboard)
  • 以上需求加一个时间范围(例如最近90天)
  • 在问题 1 中选择 A 答案的用户,其他答案的占比
  • 问题 1 选择了 A 答案和问题 2 中选择了 B 答案的用户的其他回答占比

前两个需求都是对文档的根字段进行查询,后面的都是对子文档的字段进行搜索

可视化用了 Chart.js 和 Twitter Bootstrap;胶水语言么,自然是世界上最好的语(P)言(H)啦(P),安装和启动过程什么的太简单就跳过了。

1. 初次见面

就像新人学习如何使用 Postgres 那样,步骤如下:

  1. 创建一个 index(index 既是名词,又是动词,这里是名词)
  2. 定义 mapping (相当于 schema)
  3. 使用 bulk 导入数据
  4. 查询(ElasticSearch 的强大之处可在这里体现)

创建 index 和 定义 mapping

在 ElasticSearch 使用 index 的成本相当低,以下代码在创建 index 时也同时指定了 mapping

代码只展示关键部分(反正你们也不会去运行)

$client = Elasticsearch\ClientBuilder::create()->build();
$params = [
'index' => 'your_awesome_data',
'body' => [
'mappings' => [
'ur_radio_answers' => [
'properties' => [
'answer_id' => [ #这里是字段名
'type' => 'string', #字段类型(不指定也行,elasticsearch 自己会猜)
'index' => 'not_analyzed' #告诉 elasticsearch,本字段不需要被分词,需要完整的读写)
],
'user_id' => ['type' => 'string', 'index' => 'not_analyzed'],
'questions' => [
'type' => 'nested',
'properties' => [
'page_id' => [
'type' => 'string',
'index' => 'not_analyzed'
],
'question_id' => ['type' => 'string', 'index' => 'not_analyzed'],
'question' => ['type' => 'string', 'index' => 'not_analyzed'],
'option' => ['type' => 'string', 'index' => 'not_analyzed']
]
],
'start_at' => [
'type' => 'date',
'format' => 'yyyy-MM-dd HH:mm:ss'
],
'ended_at' => ['type' => 'date', 'format' => 'yyyy-MM-dd HH:mm:ss']
]
]
]
]
]; $client->indices()->create($params);

使用 bulk API 导入数据

这部分代码没啥好看,只要知道在批量导入数据的时候用 bulk API 就行了

bulk 是批量插入文档的 API,一般是将几千个 Document 一起插入(因为每插入一次就是一个 HTTP 请求)

$client = Elasticsearch\ClientBuilder::create()->build();
$connect = new mysqli('localhost', 'root', 'STUPIDPASSWORD', 'db'); $max = 823880;
$cursor = 1000; while ($cursor < $max) {
$result = $connect->query("select * from raw_answer_265033 where wd_oaid > {$cursor} order by wd_oaid asc limit 1000");
$params = [];
while ($obj = $result->fetch_array()) {
$pages = json_decode($obj['wd_answer_json']);
$answer = [
'answer_id' => $obj['wd_oaid'],
'user_id' => $obj['wd_uin'],
'questions' => [],
'ip' => $obj['wd_ip'],
'start_at' => date('Y-m-d h:i:s', $obj['wd_starttime']),
'ended_at' => date('Y-m-d h:i:s', $obj['wd_endtime'])
];
foreach ($pages as $page) {
foreach ($page->questions as $question) {
foreach ($question->options as $option) {
if (isset($option->checked) && $option->checked == 1) {
$answer['questions'][] = [
'page_id' => $page->id,
'question_id' => $question->id,
'question' => trim(strip_tags(htmlspecialchars_decode($question->title))),
'option' => trim(strip_tags(htmlspecialchars_decode($option->text))),
];
}
}
}
}
$cursor = $obj['wd_oaid'];
$params['body'][] = [
'index' => ['_index' => 'your_awesome_data', '_type' => 'your_awesome_data']
];
$params['body'][] = $answer;
}
// 这里是重点
$response = $client->bulk($params);
$params = [];
}

经过上面胶水语言的拼装,单个 Document 在入库时是长这样的:

{
"answer_id": "192013",
"user_id": "2971957289",
"questions": [ #这里是一个数组,数量都不一样;(在 ElasticSearch 中就是 Nested Document)
{
"page_id": "p-12-Y1cU",
"question_id": "q-35-gJ9a",
"question": "八月飘香香满园(打一地名)",
"option": "桂林"
},
{
"page_id": "p-1-e8fe",
"question_id": "q-4-irlF",
"question": "遥知不是雪,为有暗香来(打一《红楼梦》人名)",
"option": "王作梅"
},
{
"page_id": "p-2-8jI8",
"question_id": "q-48-WG7d",
"question": "单刀赴会 (打一《水浒传》人名)",
"option": "林冲"
}
],
"ip": "223.88.92.21",
"start_at": "2016-02-21 12:02:01",
"ended_at": "2016-02-21 13:18:15"
}

以下是返回结果, took 属性是查询耗时,这里的空白查询花了 42ms,hits.total 表示有多少个 Document,这里有 82万,表明我们刚才的批量插入成功了

{
"took": 42,
"timed_out": false,
"_shards": { "total": 5, "successful": 5, "failed": 0 },
"hits": { "total": 822880, "max_score": 1.0, "hits": [ #这里是搜索结果,省略了 ] }
}

查询

好了,以上都只是准备工作,需求来了:

  • 没有任何条件过滤,统计所有问题的各选项比例

这是查询语句

{
"aggs": {
"answers": {
"nested": {
"path": "questions"
},
"aggs": {
"questions": {
"terms": {
"field": "questions.question",
"size": 100,
"order": {
"_count": "desc"
}
},
"aggs": {
"options": {
"terms": {
"field": "questions.option",
"size": 100,
"order": {
"_count": "desc"
}
}
}
}
}
}
},
"dates": {
"date_histogram": {
"field": "ended_at",
"interval": "day",
"min_doc_count": 0
},
"aggs": {
"user_count": {
"cardinality": {
"field": "answer_id"
}
}
}
}
}
}

这是返回结果,只耗时 155ms,并且在一个请求内返回了两个统计结果( dates 和 answers ))

下一段再介绍这个查询用到的聚合

{
"took": 155,
"timed_out": false,
"_shards": { "total": 5, "successful": 5, "failed": 0},
"hits": {"total": 822880, "max_score": 0, "hits": []},
"aggregations": {
"dates": {
"buckets": [
{"key_as_string": "2016-02-22 00:00:00", "key": 1456099200000, "doc_count": 573855, "user_count": {"value": 613589}},
{"key_as_string": "2016-02-23 00:00:00", "key": 1456185600000, "doc_count": 35533, "user_count": {"value": 32221}}
# 省略类似以上两条的内容
]
},
"answers": {
"doc_count": 2738528,
"questions": {
"doc_count_error_upper_bound": 0, "sum_other_doc_count": 0,
"buckets": [
{ "key": "千条线,万条线, 掉到水里看不见(打一自然现象)",
"doc_count": 166145,
"options": {
"doc_count_error_upper_bound": 0, "sum_other_doc_count": 0,
"buckets": [
{"key": "雨", "doc_count": 147481},
{"key": "雪", "doc_count": 11717},
{"key": "雾", "doc_count": 6947}
]
}
},
{ "key": "细白嫩肉裹紫衣,霜儿一打不成器(打一蔬菜)",
"doc_count": 164585,
"options": {
"doc_count_error_upper_bound": 0, "sum_other_doc_count": 0,
"buckets": [
{"key": "茄子", "doc_count": 136404},
{"key": "紫薯", "doc_count": 19811},
{"key": "萝卜", "doc_count": 8370}
]
}
},
{ "key": "八月飘香香满园(打一地名)",
"doc_count": 164571,
"options": {
"doc_count_error_upper_bound": 0, "sum_other_doc_count": 0,
"buckets": [
{"key": "桂林", "doc_count": 148744},
{"key": "厦门", "doc_count": 8963},
{"key": "青岛", "doc_count": 6864}
]
}
}
# 省略类似内容
]
}
}
}
}

直接可视化就是下图的样子

改一下需求: 问题1选择 A 选项的用户是怎么选择其他选项的?

这里只现实 query 部分,省略 aggs,以下是查询

{
"query": {
"filtered": {
"query": {
"nested": {
"path": "questions",
"query": {
"bool": {
"must": [
{
"term": {
"questions.question": {
"value": "千条线,万条线, 掉到水里看不见(打一自然现象)"
}
}
},
{
"term": {
"questions.option": {
"value": "雨"
}
}
}
]
}
}
}
},
"filter": {
"and": [
{
"range": {
"ended_at": {
"from": "2016-02-14 00:00:00",
"to": "2016-03-15 23:59:59"
}
}
}
]
}
}
},
"aggs": {
#
.
.
.
}
}

返回结果,耗时差不多,还是很快的

{
"took": 63,
"timed_out": false,
"_shards": { "total": 5, "successful": 5, "failed": 0 },
"hits": { "total": 147481, "max_score": 0, "hits": [ #... ] }
}

聚合

在 ElasticSearch 中,聚合分为两种: Metrics 和 Bucket,上面的查询里包含了这两种聚合,分别展开说明

Metrics 直接计算出结果,类似 SQL 中的 sum(), min(), max(), avg(), count() 函数

Bucket 不像 Metrics 直接出指标,而且创建一堆桶(可以看到每个桶有多少数量的文档),然后还可以再用 Sub-Aggregations 再聚合

Nested Aggregation

aggs.answers 用到了,这个聚合不出结果,只是告诉 ElasticSearch 某个字段是 Nested 的,然后再继续进行聚合

Date Histogram Aggregation

例子中的 aggs.dates 就使用了 Date Histogram,这是最常用的聚合,只要数据中包含时间字段就可以使用这个聚合。有哪些使用场景?

  • 每月/周/日/时/分,不同周期内的数量,而且这个周期不一定是单周、单日,还可以是每2天,每3个小时 etc.
  • 某个时间点如果没有数据, ElasticSearch 也能自动补充上这个时间点(count 为 0)

Terms Aggregation

aggs.answers.aggs.questions 中使用了两次,相当于 SQL 的 group by,属于 Bucket Aggregations

Cardinality Aggregation

相当于 SQL 的 count(distinct(FIELD)),属于 Metrics Aggregations

*还有一个很重要的概念:聚合后再聚合 Sub-Aggregations *

像例子中的 aggs.answers.aggs.questions,就是先用题目进行聚合,然后再将答案聚合一次(见 aggs.answers.aggs.questions.options),如果不使用 Sub-Aggregations 就没法讲答案放在问题下了

2. 日常使用

在导入完数据后,常规维护有哪些呢?

  • 插入新的 Document,相当于 SQL 的 insert
  • 更新原有的 Document,相当于 SQL 的 update
  • 删除 Document,也就是 SQL 的 delete

插入单个 Document (例如有用户刚填完一份问卷)

以下都是从官方拷贝的例子

curl -XPUT 'localhost:9200/customer/external/1' -d '
{
"name": "John Doe"
}'

更新原有的 Document

curl -XPOST 'localhost:9200/customer/external/1/_update' -d '
{
"doc": { "name": "Jane Doe" }
}'

删除 Document,没有意外,如你所见,用的还是 DELETE 方法,很 RESTful

curl -XDELETE 'localhost:9200/customer/external/2'

常规的使用如果不更新字段,就跟使用 MySQL 差不多,没有太大区别

总结

查询时间

好了,这里是重点,实时计算真的很重要(否则要验证一个想法的成本都很高),在 ElasticSearch 中,对几百万行进行搜索都能在几十至几百 ms 内完成

初次导入数据耗时

从 MySQL 读取到全部塞进 ElasticSearch 花了 420秒(7分钟),文档结构简单时能更加快(每秒几万)

空间占用

本例子中 Documents 有 360万(子文档也算一个),空间占用只有 434.4MB

其他

ElasticSearch 真的很快,尤其是在数据分析领域,请不要被它的名字上的 search 给骗了

在对几百万、几千万的数据能实时搜索和聚合,同时占用空间也不大,很轻松就能造一个穷人版的 Google Analytics

ElasticSearch 为啥这么快?IEG 前同事 @wentao 写了一系列文章分享,强烈建议阅读一下:

使用 ElasticSearch Aggregations 进行统计分析(转)的更多相关文章

  1. 使用 ElasticSearch Aggregations 进行统计分析

    https://blog.csdn.net/zxjiayou1314/article/details/53837719/

  2. Elasticsearch aggregations API

    聚合能力 Aggregation API 类似 SQL 中的 GROUP BY 语句,可以以某个字段来进行分组. Aggregation API 支持分级分组,多级的分组过程是由外到里的. Aggre ...

  3. ElasticSearch 的 聚合(Aggregations)

    Elasticsearch有一个功能叫做 聚合(aggregations) ,它允许你在数据上生成复杂的分析统计.它很像SQL中的 GROUP BY 但是功能更强大. Aggregations种类分为 ...

  4. Elasticsearch(8) --- 聚合查询(Metric聚合)

    Elasticsearch(8) --- 聚合查询(Metric聚合) 在Mysql中,我们可以获取一组数据的 最大值(Max).最小值(Min).同样我们能够对这组数据进行 分组(Group).那么 ...

  5. ElasticSearch 5学习(2)——Kibana+X-Pack介绍使用(全)

    Kibana是一个为 ElasticSearch 提供的数据分析的 Web 接口.可使用它对日志进行高效的搜索.可视化.分析等各种操作.Kibana目前最新的版本5.0.2,回顾一下Kibana 3和 ...

  6. elasticsearch的javaAPI之query

    elasticsearch的javaAPI之query API the Search API同意运行一个搜索查询,返回一个与查询匹配的结果(hits). 它能够在跨一个或多个index上运行, 或者一 ...

  7. (转)开源分布式搜索平台ELK(Elasticsearch+Logstash+Kibana)入门学习资源索引

    Github, Soundcloud, FogCreek, Stackoverflow, Foursquare,等公司通过elasticsearch提供搜索或大规模日志分析可视化等服务.博主近4个月搜 ...

  8. elasticsearch in docker/ and aggregation,,performance tune ;throughout

    Docker环境中Elasticsearch的安装 ]https://wenchao.ren/archives/category/elasticsearch/page/2 [ElasticSearch ...

  9. 开源分布式搜索平台ELK(Elasticsearch+Logstash+Kibana)入门学习资源索引

    from:  http://www.w3c.com.cn/%E5%BC%80%E6%BA%90%E5%88%86%E5%B8%83%E5%BC%8F%E6%90%9C%E7%B4%A2%E5%B9%B ...

随机推荐

  1. [MongoDB教程] 2.MongoDB的安装与使用

    下载mongodb的版本,两点注意 根据业界规则,偶数为稳定版,如3.2.X:奇数为开发版,如3.3.X 32bit的mongodb最大只能存放2G的数据,64bit就没有限制 MongoDB官网安装 ...

  2. Python3之高阶函数sorted

    排序算法 Python内置的sorted()函数可以对list进行排序 >>> sorted([36,5,-12,9,-21]) [-21, -12, 5, 9, 36] 此外,so ...

  3. Caché到MySQL数据同步方法!

    随着医疗行业信息化的发展,积累了大量的业务数据,如何挖掘这些数据,实现数据的可视化被提上日程,医院中通常有许多的信息化系统,使用的又都是不同厂商的数据库产品,如何统一汇聚数据,实现数据互通也是一个大问 ...

  4. java中实现在线人数统计

    //java 代码public class SessionCounter implements HttpSessionListener { private static int activeSessi ...

  5. vue 强制刷新组件重新渲染

    实现功能:使用富文本编辑器编写文章,然后把编写成功的文章用子组件显示. 问题描述:父组件给子组件传递数据,子组件第一次调用数据的时候页面渲染是正常的,当数据变化的时候,子组件的页面渲染就失效了. 问题 ...

  6. vue+element-ui动态生成多级表头,并且将有相同字段下不同子元素合并为同一个

    element表头要多层生成,下一级表头数据源必须是当前表头的子一级,这样一层一层嵌套可以生成多层表头: 要把数据处理成这种类型的数据 var arr = []; for (var key in ob ...

  7. [转帖]Swagger介绍及使用

    Swagger介绍及使用 32018.12.07 01:39:21字数 2241阅读 89207 https://www.jianshu.com/p/349e130e40d5 导语: 相信无论是前端还 ...

  8. java源码 -- LinkedHashMap

    一.概述 LinkedHashMap 继承自 HashMap,在 HashMap 基础上,通过维护一条双向链表,解决了 HashMap 不能随时保持遍历顺序和插入顺序一致的问题. 除此之外,Linke ...

  9. 【Docker】:docker安装ELK(logstash,elasticsearch,kibana)

    一:安装logstash 1.拉取镜像 docker pull logstash:5.6.11 2.创建目录 mkdir /docker/logstash cd /docker/logstash 3. ...

  10. VS2010 MFC的按钮风格改变

    改变VS2010 MFC的按钮风格 VS2010建的MFC工程按钮默认的风格类似VC6.0(直角矩形),如想美观按钮改为WIN7的按钮风格(圆角矩形),只需在代码中找到头文件"stdafx. ...