记录因Sharding Jdbc批量操作引发的一次fullGC
周五晚上告警群突然收到了一条告警消息,点开一看,应用 fullGC 了。
于是赶紧联系运维下载堆内存快照,进行分析。
内存分析
使用 MemoryAnalyzer 打开堆文件
mat 下载地址:https://archive.eclipse.org/mat/1.8/rcp/MemoryAnalyzer-1.8.0.20180604-win32.win32.x86_64.zip
下载下来后需要调大一下 MemoryAnalyzer.ini 配置文件里的-Xmx2048m
打开堆文件后如图:
发现有 809MB 的一个占用,应该问题就出在这块了。然后点击 Dominator Tree,看看有什么大的对象占用。
我们找大的对象,一级级往下点看看具体是谁在占用内存。点到下面发现是 sharding jdbc 里面的类,然后再继续往下发现了一个 localCache。
原来是一个本地缓存占了这么大的空间
为什么有这个 LocalCache 呢?
带着这个疑惑我们去代码里看看它是怎么使用的,根据堆内存分析上的提示,我直接打开了 SQLStatementParserEngine 类。
public final class SQLStatementParserEngine {
private final SQLStatementParserExecutor sqlStatementParserExecutor;
private final LoadingCache<String, SQLStatement> sqlStatementCache;
public SQLStatementParserEngine(String databaseType, SQLParserRule sqlParserRule) {
this.sqlStatementParserExecutor = new SQLStatementParserExecutor(databaseType, sqlParserRule);
this.sqlStatementCache = SQLStatementCacheBuilder.build(sqlParserRule, databaseType);
}
public SQLStatement parse(String sql, boolean useCache) {
return useCache ? (SQLStatement)this.sqlStatementCache.getUnchecked(sql) : this.sqlStatementParserExecutor.parse(sql);
}
}
他这个里面有个 LoadingCache 类型的 sqlStatementCache 对象,这个就是我们要找的缓存对象。
从 parse 方法可以看出,它这里是想用本地缓存做一个优化,优化通过 sql 解析 SQLStatement 的速度。
在普通的场景使用应该是没问题的,但是如果是进行批量操作场景的话就会有问题。
就像下面这个语句:
@Mapper
public interface OrderMapper {
Integer batchInsertOrder(List<Order> orders);
}
<insert id="batchInsertOrder" parameterType="com.mmc.sharding.bean.Order" >
insert into t_order (id,code,amt,user_id,create_time)
values
<foreach collection="list" item="item" separator=",">
(#{item.id},#{item.code},#{item.amt},#{item.userId},#{item.createTime})
</foreach>
</insert>
1)我传入的 orders 的个数不一样,会拼出很多不同的 sql,生成不同的 SQLStatement,都会被放入到缓存中
2)因为批量操作的拼接,sql 本身长度也很大。如果我传入的 orders 的 size 是 1000,那么这个 sql 就很长,也比普通的 sql 更占用内存。
综上,就会导致大量的内存消耗,如果是请求速度很快的话,就就有可能导致频繁的 FullGC。
解决方案
因为是参数个数不同而导致的拼成 Sql 的不一致,所以我们解决参数个数就行了。
我们可以将传入的参数按我们指定的集合大小来拆分,即不管传入多大的集合,都拆为{300, 200, 100, 50, 25, 10, 5, 2, 1}这里面的个数的集合大小。如传入 220 大小的集合,就拆为[{200},{10},{10}],这样分三次去执行 sql,那么生成的 SQL 缓存数也就只有我们指定的固定数字的个数那么多了,基本不超过 10 个。
接下来我们实验一下,改造前和改造后的 gc 情况。
测试代码如下:
@RequestMapping("/batchInsert")
public String batchInsert(){
for (int j = 0; j < 1000; j++) {
List<Order> orderList = new ArrayList<>();
int i1 = new Random().nextInt(1000) + 500;
for (int i = 0; i < i1; i++) {
Order order=new Order();
order.setCode("abc"+i);
order.setAmt(new BigDecimal(i));
order.setUserId(i);
order.setCreateTime(new Date());
orderList.add(order);
}
orderMapper.batchInsertOrder(orderList);
System.out.println(j);
}
return "success";
}
GC 情况如图所示:
cache 里面存有元素:
修改代码后:
@RequestMapping("/batchInsert")
public String batchInsert(){
for (int j = 0; j < 1; j++) {
List<Order> orderList = new ArrayList<>();
int i1 = new Random().nextInt(1000) + 500;
for (int i = 0; i < i1; i++) {
Order order=new Order();
order.setCode("abc"+i);
order.setAmt(new BigDecimal(i));
order.setUserId(i);
order.setCreateTime(new Date());
orderList.add(order);
}
List<List<Order>> shard = ShardingUtils.shard(orderList);
shard.stream().forEach(
orders->{
orderMapper.batchInsertOrder(orders);
}
);
System.out.println(j);
}
return "success";
}
GC 情况如下:
cache 里面存有元素:
可以看出 GC 次数有减少,本地缓存的条数由 600 多减到了 11 个,如果导出堆内存还能看出至少降低了几百 M 的本地内存占用。
另外,这个 cache 是有大小限制的,如果因为一个 sql 占了 600 多个位置,那么其他的 sql 的缓存就会被清理,导致其他 SQL 性能会受到影响,甚至如果机器本身内存不高,还会因为这个 cache 过大而导致频繁的 Full GC
大家以后在使用 Sharding JDBC 进行批量操作的时候就需要多注意了
另附上拆分为固定大小的数组的工具方法如下:
public class ShardingUtils {
private static Integer[] nums = new Integer[]{800,500,300, 200, 100, 50, 25, 10, 5, 2, 1};
public static <T> List<List<T>> shard(final List<T> originData) {
return shard(originData, new ArrayList<>());
}
private static <T> List<List<T>> shard(final List<T> originData, List<List<T>> result) {
if (originData.isEmpty()) {
return result;
}
for (int i = 0; i < nums.length; i++) {
if (originData.size() >= nums[i]) {
List<T> ts = originData.subList(0, nums[i]);
result.add(ts);
List<T> ts2 = originData.subList(nums[i], originData.size());
if (ts2.isEmpty()) {
return result;
} else {
return shard(ts2, result);
}
}
}
return result;
}
}
记录因Sharding Jdbc批量操作引发的一次fullGC的更多相关文章
- Sharding jdbc 强制路由策略(HintShardingStrategy)使用记录
背景 随着项目运行时间逐渐增加,数据库中的数据也越来越多,虽然加索引,优化查询,但是数据量太大,还是会影响查询效率,也给数据库增加了负载. 再加上冷数据基本不使用的场景,决定采用分表来处理数据,从而来 ...
- Spring boot项目集成Sharding Jdbc
环境 jdk:1.8 framework: spring boot, sharding jdbc database: MySQL 搭建步骤 在pom 中加入sharding 依赖 <depend ...
- sharding jdbc(sphere) 3.1.0 spring boot配置
sharding jdbc 2.x系列详解参见https://www.cnblogs.com/zhjh256/p/9221634.html. 最近将sharding jdbc的配置从xml切换到了sp ...
- Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表
Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表 交易所流水表的单表数据量已经过亿,选用Sharding-JDBC进行分库分表.MyBatis-P ...
- spring boot:配置shardingsphere(sharding jdbc)使用druid数据源(druid 1.1.23 / sharding-jdbc 4.1.1 / mybatis / spring boot 2.3.3)
一,为什么要使用druid数据源? 1,druid的优点 Druid是阿里巴巴开发的号称为监控而生的数据库连接池 它的优点包括: 可以监控数据库访问性能 SQL执行日志 SQL防火墙 但spring ...
- Spring学习记录(十四)---JDBC基本操作
先看一些定义: 在Spring JDBC模块中,所有的类可以被分到四个单独的包:1.core即核心包,它包含了JDBC的核心功能.此包内有很多重要的类,包括:JdbcTemplate类.SimpleJ ...
- Spring JDBC批量操作
以下示例将演示如何使用spring jdbc进行批量更新.我们将在单次批次操作中更新student表中的记录. student表的结果如下 - CREATE TABLE student( id INT ...
- 浅谈sharding jdbc
定位为轻量级Java框架,在Java的JDBC层提供的额外服务. 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架. ...
- Sharding JDBC案例实战
基础分库 以下实例基于shardingsphere 4.1.0 + SpringBoot 2.2.5.RELEASE版本 依赖导入: <properties> <project.bu ...
随机推荐
- virtio_net 设备的队列数问题
virtio_net设备的其他问题:见 https://www.cnblogs.com/10087622blog/p/15886345.html 一个virtio_net设备在 virtnet_pro ...
- 基于 .NET 6 的轻量级 Webapi 框架 FastEndpoints
大家好,我是等天黑. FastEndpoints 是一个基于 .NET 6 开发的开源 webapi 框架,它可以很好地替代 .NET Minimal APIs 和 MVC ,专门为开发效率而生,带来 ...
- Hnoi2014世界树
题面 说明/提示 N<=300000, q<=300000,m[1]+m[2]+...+m[q]<=300000 题解 这道题一看 "m[1]+m[2]+...+m[q]& ...
- Java中字节流的总结及代码练习
Java中的字节流 在描述字节流时,先知道什么是流 流可以分为:输入流和输出流 输入流和输出流 示意图: 字节流读取内容:二进制,音频,视频 优缺点:可以保证视频音频无损,效率低,没有缓冲区 字节流可 ...
- 【java】非常多!学习路径24-总结目前所有知识(上)
感谢sikiedu.com的siki老师.几年前就开始看siki的课程,最近突然想写这个笔记系列,顺便回顾一下这些基础的知识,同时也希望能帮助到一些人,有问题一起交流哈. 全文共十章,大约1.5万字, ...
- 日常问题: SQL优化
日常开发中,除了开辟新项目,业务需求开发,一般还要做负责系统的日常运维.比如线上告警了,出bug了,必须及时修复.这天,运维反馈mysql cpu告警了,然后抓了该时间节点的慢sql日志,要开发分析解 ...
- spark 解决 java.util.Date is not a valid external type for schema of Date
出错伪代码如下: //出错的点在这里 import java.util.Date ... val t_rdd = t_frame.rdd.map(row => { val photo_url = ...
- 谣言检测——《MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection》
论文信息 论文标题:MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection论文作者:Jiaqi Zheng, ...
- haodoop概念总结
大数据部门组织结构 Hadoop的优势(4高) 高可靠性:Hadoop底层维护多个数据副本 高扩展性:在集群间分配任务数据,可方便的扩展 高效性:在MapReduce的思想下,Hadoop时并行工作的 ...
- 如何为 SAST 工具设置误报基准?
许多 SAST 工具都无法避免误报的问题.这些工具经常报告一些实际不存在的漏洞,这种不准确性让安全团队耗费大量时间来对误报进行分类和处理,这时设置误报基准就显得十分必要. 通过设置误报基准,安全团队可 ...