首先感谢题解小哥,他在标算外又总结了三种做法。

此处仅提及最后一种做法。

首先考虑题目中要求的所有结点度数为奇数的限制。

对于每一个联通块,因为所有结点总度数是偶数,所以总结点数也必须是偶数的。即所有联通块都要是偶数大小。

而考虑任意一个偶数大小的联通块,我们任意取它的一个生成树,然后进行如下算法:

设 1 为根结点;

按深度从大到小枚举每一个结点

若其当前度数为偶数

则断开与他的父结点的连边;

这样除根结点外的所有结点的度数都能保证为奇数,而因为总度数和为偶数,所以根结点的度数也为奇数。

因此,我们得到

存在方案使得所有结点度数为奇数 \(\iff\) 所有联通快大小为偶数。

注意到偶数加偶数还是偶数,换言之,添加多余的边是不会使答案变劣的。并且,答案是单调递减的。所以我们可以达到如下结论:

如果第\(j\)次询问的答案大于等于第\(i\)条边的边权,那么可以在处理询问区间\(\left[ i,j-1 \right]\)时直接将第\(i\)条边加上。

这样我们就可以用线段树分治。我们对询问开线段树,从后往前处理。遍历到叶结点时按边权暴力从小到大枚举边(在上一次基础上),与此同时确定了枚举到的边产生贡献的范围,用线段树实现区间修改。在遍历时需要维护支持撤销操作的并查集。这相当于是在分治的同时确定每条边的删除时间,即答案小于它的边权的时刻。

时间复杂度\(O(nlog^2n)\)。

#include <bits/stdc++.h>
using namespace std;
const int N = 300010;
int odd;
struct record {
int *p,v;
inline void rollback() {
*p = v;
}
} rec[N * 10];
int uni[N],sz[N],cnt;
int get_fa(int x) {
while (uni[x] != x)
x = uni[x];
return x;
}
void unio(int x,int y) {
x = get_fa(x);
y = get_fa(y);
if (x == y) return;
if (sz[x] > sz[y]) swap(x,y);
int tmp = (sz[x]&1) + (sz[y]&1) - ((sz[x] + sz[y])&1);
rec[++cnt] = (record) {&odd,odd};
odd -= tmp;
rec[++cnt] = (record) {&uni[x],uni[x]};
uni[x] = y;
rec[++cnt] = (record) {&sz[y],sz[y]};
sz[y] += sz[x];
}
struct data {
int a,b,v,id;
bool operator < (const data& x) const {
return v < x.v;
}
} dat[N];
vector<int> edg[N << 2];
int n,m,cur,ans[N];
void modify(int lp,int rp,int id,int x,int l,int r) {
if (lp > rp) return;
if (lp > r || rp < l) return;
if (l >= lp && r <= rp)
return (void) (edg[x].push_back(id));
int mid = (l + r) >> 1;
modify(lp,rp,id,x<<1,l,mid);
modify(lp,rp,id,x<<1|1,mid+1,r);
}
void solve(int x,int l,int r) {
int tmp = cnt;
for (int i = 0 ; i < (int)edg[x].size() ; ++ i)
unio(dat[edg[x][i]].a,dat[edg[x][i]].b);
if (l != r) {
int mid = (l + r) >> 1;
solve(x<<1|1,mid+1,r);
solve(x<<1,l,mid);
} else {
for ( ; cur <= m && odd > 0 ; ++ cur) {
if (dat[cur].id > l) continue;
unio(dat[cur].a,dat[cur].b);
modify(dat[cur].id,l-1,cur,1,1,m);
}
if (odd > 0) ans[l] = -1;
else ans[l] = dat[cur-1].v;
}
while (cnt > tmp)
rec[cnt--].rollback();
}
int main() {
int a,b,c;
scanf("%d%d",&n,&m);
odd = n;
for (int i = 1 ; i <= m ; ++ i) {
scanf("%d%d%d",&a,&b,&c);
dat[i] = (data) {a,b,c,i};
}
for (int i = 1 ; i <= n ; ++ i)
uni[i] = i, sz[i] = 1;
sort(dat+1,dat+m+1);
cur = 1;
solve(1,1,m);
for (int i = 1 ; i <= m ; ++ i)
printf("%d\n",ans[i]);
return 0;
}

小结:其实我根本不会想到糊结论……线段树分治的做法,相比LCT做法更加巧妙,利用题目的特殊性质从而简化了代码量。

【做题】cf603E——线段树分治的更多相关文章

  1. BZOJ4644: 经典傻逼题【线段树分治】【线性基】

    Description 这是一道经典傻逼题,对经典题很熟悉的人也不要激动,希望大家不要傻逼. 考虑一张N个点的带权无向图,点的编号为1到N. 对于图中的任意一个点集 (可以为空或者全集),所有恰好有一 ...

  2. 【线段树分治 01背包】loj#6515. 「雅礼集训 2018 Day10」贪玩蓝月

    考试时候怎么就是没想到线段树分治呢? 题目描述 <贪玩蓝月>是目前最火爆的网页游戏.在游戏中每个角色都有若干装备,每件装备有一个特征值 $w$ 和一个战斗力 $v$ .在每种特定的情况下, ...

  3. 洛谷.3733.[HAOI2017]八纵八横(线性基 线段树分治 bitset)

    LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\) ...

  4. BZOJ4025 二分图(线段树分治+并查集)

    之前学了一下线段树分治,这还是第一次写.思想其实挺好理解,即离线后把一个操作影响到的时间段拆成线段树上的区间,并标记永久化.之后一块处理,对于某个节点表示的时间段,影响到他的就是该节点一直到线段树根的 ...

  5. 【BZOJ2001】[HNOI2010]城市建设(CDQ分治,线段树分治)

    [BZOJ2001][HNOI2010]城市建设(CDQ分治,线段树分治) 题面 BZOJ 洛谷 题解 好神仙啊这题.原来想做一直不会做(然而YCB神仙早就切了),今天来怒写一发. 很明显这个玩意换种 ...

  6. 【BZOJ4137】火星商店问题(线段树分治,可持久化Trie)

    [BZOJ4137]火星商店问题(线段树分治,可持久化Trie) 题面 洛谷 BZOJ权限题 题解 显然可以树套树,外层线段树,内层可持久化Trie来做. 所以我们需要更加优美的做法.--线段树分治. ...

  7. [基本操作]线段树分治和动态dp

    不知道为什么要把这两个没什么关系的算法放到一起写...可能是都很黑科技? 1.线段树分治 例题:bzoj4026 二分图 给你一个图,资瓷加一条边,删一条边,询问当前图是不是二分图 如果用 LCT 的 ...

  8. 【Codeforces576E_CF576E】Painting Edges(可撤销并查集+线段树分治)

    题目 CF576E 分析: 从前天早上肝到明天早上qwq其实颓了一上午MC ,自己瞎yy然后1A,写篇博客庆祝一下. 首先做这题之前推荐一道很相似的题:[BZOJ4025]二分图(可撤销并查集+线段树 ...

  9. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

随机推荐

  1. Python -- print(dataframe)时,省略部分列。

    import pandas as pd # 导入后加入以下列,再显示时显示完全. pd.set_option('display.max_rows',500) pd.set_option('displa ...

  2. Python并发编程之线程池/进程池--concurrent.futures模块

    一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/ ...

  3. 【2017-2-23】C#switch case分支语句,for循环语句

    switch case分支语句 switch(一个变量值) { case 值:要执行的代码段;break; case 值:要执行的代码段;break; … default:代码段;break;(def ...

  4. OpenCV LK光流法测试

    OpenCV版本: 3.2.0 例程文件目录/samples/cpp/lkdemo.cpp 原始程序是采集相机数据,台式机没有摄像头,用Euroc测试集,偷ORB_SLAM2 /Examples/Mo ...

  5. android studio 添加get,set方法快捷方式

    android studio 添加get,set方法快捷方式

  6. ESB(Enterprise Service Bus)企业服务总线介绍

    ESB(Enterprise Service Bus)企业服务总线介绍 ESB全称为Enterprise Service Bus,即企业服务总线.它是传统中间件技术与XML.Web服务等技术结合的产物 ...

  7. centos6.8卸载DB2 10.5

    1.卸载实例 Ø  使用Root用户登陆 cd /opt/ibm/db2/V9.5/instance/ ./db2idrop db2inst1 ./dasdrop db2inst1 2.卸载db2 Ø ...

  8. 新建git并将本地代码上传到分支

    1 查看远程分支 $ git branch -a * br-2.1.2.2 master remotes/origin/HEAD -> origin/master remotes/origin/ ...

  9. MyEclipse如何配置Struts2源码的框架压缩包

    1.MyEclipse如何配置Struts2源码的框架压缩包 如本机的Struts2框架压缩包路径为:D:\MyEclipseUserLibraries\struts\struts-2.3.15.3- ...

  10. org.I0Itec.zkclient.exception.ZkTimeoutException: Unable to connect to zookeeper server within

    org.I0Itec.zkclient.exception.ZkTimeoutException: Unable to connect to zookeeper server within timeo ...