题目链接

分析:

这是一张完全图,并且边的权值是由点的权值$xor$得到的,所以我们考虑贪心的思想,考虑$kruskal$的过程选取最小的边把两个连通块合并,所以我们可以模仿$kruskal$的过程,倒着做$kruskal$,设定当前的最高位为$d$,我们把点集分为两个集合,$s$集合代表$d$位为$1$的点,$t$集合代表$d$位为$0$的点,就是$st$两个连通块,考虑这两个连通块的连接,把$t$连通块建出一棵$trie$树,然后枚举$s$集合中的点,去查找最小边,然后统计最小边的数量,递归解决$st$两个连通块,最后统计方案数的时候就是乘法原理...

为什么按照每一位的$01$来划分集合?我们考虑现在把$s$拆成两个连通块,这样一共有三个连通块,如果按照贪心的思想,一定是先连接$s$的连通块,因为最高位一定是$0$,这样边比较小...

需要注意的细节就是如果有很多相同的点,并且这张子图是完全图,那么这就是一个完全图生成树计数的问题,根据$prufer$可以得出点数为$n$的完全图生成树计数为$n^{n-2}$...证明请见:http://www.matrix67.com/blog/archives/682

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define pa pair<int,int>
#define inf 0x3f3f3f3f
#define mp make_pair
using namespace std; const int maxn=100000+5,mod=1e9+7; int n,tot,anscnt,a[maxn],s[maxn],t[maxn],fac[maxn];
long long sum; struct Trie{
int cnt,nxt[2];
}tr[maxn*30]; inline int read(void){
char ch=getchar();int x=0;
while(!(ch>='0'&&ch<='9')) ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
} inline void init(void){
for(int i=0;i<=tot;i++)
tr[i].nxt[0]=tr[i].nxt[1]=tr[i].cnt=0;
tot=0;
} inline void insert(int x){
int p=0;
for(int i=30,y;i>=0;i--){
y=(x>>i)&1;
if(!tr[p].nxt[y])
tr[p].nxt[y]=++tot;
p=tr[p].nxt[y];
}
tr[p].cnt++;
} inline pa find(int x){
int p=0,ans=0;
for(int i=30,y;i>=0;i--){
y=(x>>i)&1;
if(tr[p].nxt[y]) p=tr[p].nxt[y],ans|=y<<i;
else p=tr[p].nxt[y^1],ans|=(y^1)<<i;
}
return mp(ans^x,tr[p].cnt);
} inline int power(int x,int y){
int res=1;
while(y){
if(y&1) res=1LL*res*x%mod;
x=1LL*x*x%mod,y>>=1;
}
return res;
} inline void solve(int l,int r,int dep){
if(l>=r) return;
if(dep<0){
if(r-l+1>=2)
anscnt=1LL*anscnt*power(r-l+1,r-l-1)%mod;
return;
}
int cnt1=0,cnt2=0;
for(int i=l;i<=r;i++)
if((a[i]>>dep)&1) s[cnt1++]=a[i];
else t[cnt2++]=a[i];
for(int i=0;i<cnt1;i++) a[l+i]=s[i];
for(int i=0;i<cnt2;i++) a[l+cnt1+i]=t[i];
init();pa tmp;int ans=inf,cnt=0;
for(int i=0;i<cnt2;i++) insert(t[i]);
for(int i=0;i<cnt1;i++){
tmp=find(s[i]);
if(tmp.first<ans)
ans=tmp.first,cnt=tmp.second;
else if(tmp.first==ans)
cnt+=tmp.second;
}
if(sum!=inf&&cnt) sum+=ans,anscnt=1LL*cnt*anscnt%mod;
solve(l,l+cnt1-1,dep-1);solve(l+cnt1,r,dep-1);
} signed main(void){
n=read(),anscnt=1;fac[0]=1;
for(int i=1;i<=n;i++) fac[i]=1LL*fac[i-1]*i%mod;
for(int i=1;i<=n;i++) a[i]=read();
solve(1,n,30);
printf("%lld\n%d\n",sum,anscnt);
return 0;
}

By NeighThorn

51Nod 1601 完全图的最小生成树计数的更多相关文章

  1. 「51Nod 1601」完全图的最小生成树计数 「Trie」

    题意 给定\(n\)个带权点,第\(i\)个点的权值为\(w_i\),任意两点间都有边,边权为两端点权的异或值,求最小生成树边权和,以及方案数\(\bmod 10^9 + 7\) \(n \leq 1 ...

  2. 51Nod1601 完全图的最小生成树计数

    传送门 我居然忘写题解啦!(记忆废) 不管怎么说,这题还算是一道好题啊……你觉得敦爷出的题会有水题么 …… 这题比较容易把人误导到Boruvka算法之类的东西上去(我们机房去刚D题的人一开始大多也被误 ...

  3. 51Nod1601 完全图的最小生成树计数 Trie Prufer编码

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1601.html 题目传送门 - 51Nod1601 题意 题解 首先我们考虑如何求答案. 我们将所有 ...

  4. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...

  5. 树的Prufer 编码和最小生成树计数

      Prufer数列 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2.它可以通过简单的迭代方 ...

  6. 【bzoj1016】 JSOI2008—最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...

  7. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  8. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  9. 【BZOJ】【1016】【JSOI2008】最小生成树计数

    Kruskal/并查集+枚举 唉我还是too naive,orz Hzwer 一开始我是想:最小生成树删掉一条边,再加上一条边仍是最小生成树,那么这两条边权值必须相等,但我也可以去掉两条权值为1和3的 ...

随机推荐

  1. Python常用函数记录

    Python常用函数/方法记录 一. Python的random模块: 导入模块: import random 1. random()方法: 如上如可知该函数返回一个[0,1)(左闭右开)的一个随机的 ...

  2. Linux相关常用命令

    1.XShell中上传文件命令 首先需要安装rz文件上传工具: yum -y install lrzsz 然后执行以下命令,可打开本地系统的选择文件窗口:(或者直接把本地的文件拖动到SSH Shell ...

  3. jpeglib的使用

    1. 解压jpeglib tar xvzf libjpeg-turbo-1.2.1.tar.gz 2. 阅读里面的说明文件,得到jpeg解压缩的一般步骤: /*Allocate and initial ...

  4. 如何在创建hive表格的python代码中导入外部文件

    业务场景大概是这样的,我要对用户博文进行分词(这个步骤可以看这篇文章如何在hive调用python的时候使用第三方不存在的库-how to use external python library in ...

  5. 创建控制器view的几种方式

    1. 根据storyboard的描述创建 2. 通过xib的描述创建 3. 通过代码创建控制器的view self.window = [[UIWindow alloc] initWithFrame:[ ...

  6. CentOS 使用 LAMP 环境开启 SSL 搭建 WordPress

    环境阿里云新装CentOS 7.4, 使用yum(非编译安装)搭建LAMP, CA证书为阿里云免费提供的, WordPress为官网下载 安装 LAMP 并开启 HTTPS 1, 关闭防火墙 # sy ...

  7. centos 服务器内存管理 服务于端口状态

    du su /目录/ 查看改目录大小 ls -lht /  查看文件详情,显示文件大小(直观) df -h 查看系统内存占用情况 centos 版本 lsb_release -a cat /etc/i ...

  8. ptmalloc,tcmalloc和jemalloc内存分配策略研究 ? I'm OWen..

    转摘于http://www.360doc.com/content/13/0915/09/8363527_314549949.shtml 最近看了glibc的ptmaoolc,Goolge的tcmall ...

  9. selenium定位弹出菜单

    写selenium脚本,在浏览器定位各种弹出菜单时,有时用工具很难去取菜单的属性,下面说下如何去取: 点开firebug ,切换到“脚本”界面,首先在输入框输入单字母s,待弹出下拉列表后,单击左侧的插 ...

  10. Java基础-4变量与数据类型

    变量:变量是Java程序中的一个基本存储单元.变量是一个标识符.类型及一个可选初始值的组合定义.所有的变量都有一个作用域,即变量在某一区域有效. 基本的变量声明方式如下: int a; float b ...