扩展Lucas定理
(1)Lucas定理:p为素数,则有:
(2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) 。我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理。对于模p而言,我们有下面的式子成立:
上式左右两边的x的某项x^m(m<=n)的系数对模p同余。其中左边的x^m的系数是 C(n,m)。 而由于a0和b0都小于p,因此右边的x^m 一定是由 x^([m/p]*p) 和 x^b0 (即i=[m/p] , j=b0 ) 相乘而得 因此有:C(n,m)=C([n/p],[m/p]) * C(a0,b0) (mod p)。
(3)拓展应用:上面的p是素数,那么不是素数怎么办呢?若不是素数,将p分解质因数,将C(n,m)分别按照(1)中的方法求对p的质因数的模,然后用中国剩余定理合并。比如计算C(10,3)%14。C(10,3)=120,14有两个质因数2和7,120%2=0,120%7=1,这样用(2,0)(7,1)找到最小的正整数8即是答案,即C(10,3)%14=8。注意,这里只适用于p分解完质因数后每个质因数只出现一次,例如12=2*2*3就不行,因为2出现了两次。若p分解完质因数后,含有某个质因数出现多次,比如C(10,3)%98,其中98=2*7*7,此时就要把7*7看做一个数,即:120%2=0,120%49=22,用(2,0)(49,22)和中国剩余定理得到答案22,即C(10,3)%98=22。此时,你又会有疑问,C(10,3)%49不也是模一个非素数吗?此时不同的是这个非素数不是一般的非素数,而是某个素数的某次方。下面(4)介绍如何计算C(n,m)%p^t(t>=2,p为素数)。
(4)计算C(n,m)%p^t。我们知道,C(n,m)=n!/m!/(n-m)!,若我们可以计算出n!%p^t,我们就能计算出m!%p^t以及(n-m)!%p^t。我们不妨设x=n!%p^t,y=m!%p^t,z=(n-m)!%p^t,那么答案就是x*reverse(y,p^t)*reverse(z,p^t)(reverse(a,b)计算a对b的乘法逆元)。那么下面问题就转化成如何计算n!%p^t。比如p=3,t=2,n=19,
n!=1*2*3*4*5*6*7*8* ……*19
=[1*2*4*5*7*8*… *16*17*19]*(3*6*9*12*15*18)
=[1*2*4*5*7*8*… *16*17*19]*3^6(1*2*3*4*5*6)
然后发现后面的是(n/p)!,于是递归即可。前半部分是以p^t为周期的[1*2*4*5*7*8]=[10*11*13*14*16*17](mod 9)。下面是孤立的19,可以知道孤立出来的长度不超过 p^t,于是暴力即可。那么最后剩下的3^6啊这些数怎么办呢?我们只要计算出n!,m!,(n-m)!里含有多少个p(不妨设a,b,c),那么a-b-c就是C(n,m)中p的个数,直接算一下就行。
至此整个计算C(n,m)%p(p为任意数)的问题完美解决。下面给出代码:
i64 POW(i64 a,i64 b,i64 mod)
{
i64 ans=1;
while(b)
{
if(b&1) ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
} i64 POW(i64 a,i64 b)
{
i64 ans=1;
while(b)
{
if(b&1) ans=ans*a;
a=a*a;
b>>=1;
}
return ans;
} i64 exGcd(i64 a,i64 b,i64 &x,i64 &y)
{
i64 t,d;
if(!b)
{
x=1;
y=0;
return a;
}
d=exGcd(b,a%b,x,y);
t=x;
x=y;
y=t-a/b*y;
return d;
} bool modular(i64 a[],i64 m[],i64 k)
{
i64 d,t,c,x,y,i; for(i=2;i<=k;i++)
{
d=exGcd(m[1],m[i],x,y);
c=a[i]-a[1];
if(c%d) return false;
t=m[i]/d;
x=(c/d*x%t+t)%t;
a[1]=m[1]*x+a[1];
m[1]=m[1]*m[i]/d;
}
return true;
} i64 reverse(i64 a,i64 b)
{
i64 x,y;
exGcd(a,b,x,y);
return (x%b+b)%b;
} i64 C(i64 n,i64 m,i64 mod)
{
if(m>n) return 0;
i64 ans=1,i,a,b;
for(i=1;i<=m;i++)
{
a=(n+1-i)%mod;
b=reverse(i%mod,mod);
ans=ans*a%mod*b%mod;
}
return ans;
} i64 C1(i64 n,i64 m,i64 mod)
{
if(m==0) return 1;
return C(n%mod,m%mod,mod)*C1(n/mod,m/mod,mod)%mod;
} i64 cal(i64 n,i64 p,i64 t)
{
if(!n) return 1;
i64 x=POW(p,t),i,y=n/x,temp=1;
for(i=1;i<=x;i++) if(i%p) temp=temp*i%x;
i64 ans=POW(temp,y,x);
for(i=y*x+1;i<=n;i++) if(i%p) ans=ans*i%x;
return ans*cal(n/p,p,t)%x;
} i64 C2(i64 n,i64 m,i64 p,i64 t)
{
i64 x=POW(p,t);
i64 a,b,c,ap=0,bp=0,cp=0,temp;
for(temp=n;temp;temp/=p) ap+=temp/p;
for(temp=m;temp;temp/=p) bp+=temp/p;
for(temp=n-m;temp;temp/=p) cp+=temp/p;
ap=ap-bp-cp;
i64 ans=POW(p,ap,x);
a=cal(n,p,t);
b=cal(m,p,t);
c=cal(n-m,p,t);
ans=ans*a%x*reverse(b,x)%x*reverse(c,x)%x;
return ans;
} //计算C(n,m)%mod
i64 Lucas(i64 n,i64 m,i64 mod)
{
i64 i,t,cnt=0;
i64 A[205],M[205];
for(i=2;i*i<=mod;i++) if(mod%i==0)
{
t=0;
while(mod%i==0)
{
t++;
mod/=i;
}
M[++cnt]=POW(i,t);
if(t==1) A[cnt]=C1(n,m,i);
else A[cnt]=C2(n,m,i,t);
}
if(mod>1)
{
M[++cnt]=mod;
A[cnt]=C1(n,m,mod);
}
modular(A,M,cnt);
return A[1];
}
转自:http://www.cnblogs.com/jianglangcaijin/p/3446839.html
扩展Lucas定理的更多相关文章
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- 【learning】 扩展lucas定理
首先说下啥是lucas定理: $\binom n m \equiv \binom {n\%P} {m\%P} \times \binom{n/P}{m/P} \pmod P$ 借助这个定理,求$\bi ...
- BZOJ - 2142 礼物 (扩展Lucas定理)
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...
- [bzoj2142]礼物(扩展lucas定理+中国剩余定理)
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...
- Lucas定理和扩展Lucas定理
1.Lucas定理 首先给出式子:\(C_n^m\%p = C_{\lfloor\frac{n}{p}\rfloor}^{\lfloor\frac{m}{p}\rfloor} * C_{n\%p}^{ ...
- Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理
http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...
- [笔记] 扩展Lucas定理
[笔记] 扩展\(Lucas\)定理 \(Lucas\)定理:\(\binom{n}{m} \equiv \binom{n/P}{m/P} \binom{n \% P}{m \% P}\pmod{P} ...
- [学习笔记]扩展LUCAS定理
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...
- 扩展Lucas定理 扩展Lucas板子
题意概述:多组询问,给出N,K,M,要求回答C(N,K)%M,1<=N<=10^18,1<=K<=N,2<=M<=10^6 分析: 模数不为质数只能用扩展Lucas ...
随机推荐
- Python 实现队列
操作 Queue() 创建一个空的队列 enqueue(item) 往队列中添加一个item元素 dequeue() 从队列头部删除一个元素 is_empty() 判断一个队列是否为空 size() ...
- BEM 中文翻译
BEM 原文请看 getBEM Introduction(介绍) Block 独立实体,独立的意义 Examples:header, container, menu, checkbox, input ...
- [JCIP笔记] (二)当我们谈线程安全时,我们在谈论什么
总听组里几个大神说起线程安全问题.本来对"线程安全"这个定义拿捏得就不是很准,更令人困惑的是,大神们用这个词指代的对象不仅抽象而且千变万化.比如,我们的架构师昨天说: " ...
- Python之旅_第一章Python入门
一.编程语言分类 1.机器语言:即计算机能听懂的二进制语言,0000 0001,直接操控硬件: 2.汇编语言:简写的英文标识符代替二进制语言,本质同样是直接操控硬件: 3.高级语言:用更贴近人类的语言 ...
- WIN7 局域网共享打印机每次电脑重启后必须登录密码重新连接问题修复
第一步,WIN+R(或者开始->附件->运行)输入gpedit或gpedit.msc 进入 第二步:把这几个拒绝的Guest给删除掉,也可以只删除""拒绝从王洛访问这台 ...
- Docker Mysql主从同步配置搭建
Docker Mysql主从同步配置搭建 建立目录 在虚拟机中建立目录,例如路径/home/mysql/master/data,目录结构如下: Linux中 新建文件夹命令:mkdir 文件夹名 返回 ...
- hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装
hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装 一.依赖文件安装 1.1 JDK 参见博文:http://www.cnblogs.com/liugh ...
- JSON(五)——同步请求中使用JSON格式字符串进行交互(不太常见的用法)
在同步请求中使用JSON格式进行数据交互的场景并不多,同步请求是浏览器直接与服务器进行数据交互的大多是用jsp的标签jstl和el表达式对请求中的数据进行数据的渲染.我也是在一次开发中要从其它服务器提 ...
- LayUI之table数据表格获取行、行高亮等相关操作
前言 目前LayUI数据表格既美观有不乏一些实用功能.基本上表格应有的操作已经具备,LayUI作者[贤心]肯定是煞费苦心去优化,此处致敬.但是实话实话,如果单纯那数据表格功能来说,EasUI的数据表格 ...
- java 中String类的常用方法总结,带你玩转String类。
String类: String类在java.lang包中,java使用String类创建一个字符串变量,字符串变量属于对象.String类对象创建后不能修改,StringBuffer & St ...