题目描述

Farmer John has decided to give each of his cows a cell phone in hopes to encourage their social interaction. This, however, requires him to set up cell phone towers on his N (1 ≤ N ≤ 10,000) pastures (conveniently numbered 1..N) so they can all communicate.

Exactly N-1 pairs of pastures are adjacent, and for any two pastures A and B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B) there is a sequence of adjacent pastures such that A is the first pasture in the sequence and B is the last. Farmer John can only place cell phone towers in the pastures, and each tower has enough range to provide service to the pasture it is on and all pastures adjacent to the pasture with the cell tower.

Help him determine the minimum number of towers he must install to provide cell phone service to each pasture.

John想让他的所有牛用上手机以便相互交流(也是醉了。。。),他需要建立几座信号塔在N块草地中。已知与信号塔相邻的草地能收到信号。给你N-1个草地(A,B)的相邻关系,问:最少需要建多少个信号塔能实现所有草地都有信号。

输入输出格式

输入格式:

  Line 1: A single integer: N

  Lines 2..N: Each line specifies a pair of adjacent pastures with two space-separated integers: A and B

输出格式:

  •   Line 1: A single integer indicating the minimum number of towers to install

输入输出样例

输入样例#1:

5
1 3
5 2
4 3
3 5
输出样例#1:

2
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define man 10050
int n,f[man][4];
//这里的安全表示以x为根的子树全部都安全
//这里的不安全表示以x为根的子树除了x都安全
//f[][0]不放塔但安全
//f[][1]不放塔并且不安全
//f[][2]放塔但安全
//f[][3]放塔还是不安全(肯定不存在,所以不用考虑)
struct edge{int next,to;}e[man<<2];
int head[man<<2],num=0;
inline void add(int from,int to)
{e[++num].next=head[from];e[num].to=to;head[from]=num;}
void treedp(int x,int fa)
{ f[x][0]=f[x][1]=0;f[x][2]=1;int minn=12456789;//当f[][2]时,初始值肯定有他自身的价值
bool changed=0;//记录是否要更改f[x][0]的值
for(int i=head[x];i;i=e[i].next)
{ int to=e[i].to;
if(to==fa)continue;//防止重新搜回去
treedp(to,x);
minn=min(minn,f[to][2]-f[to][0]);//预处理如果将一个点从不放塔变为放塔,那么他的最小代价是多少
f[x][0]+=min(f[to][0],f[to][2]);//先把最小的价值加上去,如果不行的话下面再改;
if(f[to][2]<=f[to][0]) changed=1;//如果放了塔的价值比不放塔的价值还小,那么肯定放塔咯,因为放塔了还可以多照看几个地方(并且还可以把他的父亲一起看了)
f[x][1]+=f[to][0];//本身的f[][1]就是表示不放塔并不安全,那么只能叫它这么继续错下去,因为是当前这个点变得安全是f[][0]和f[][2]的责任,不需要f[][1]的干涉
f[x][2]+=min(f[to][0],min(f[to][1],f[to][2]));//因为当前放了塔并且安全,那么他的子树放不放塔肯定都安全,所以子节点的任何状态都可以成立
}
if(changed==0) f[x][0]+=minn;//如果他的子树都不放塔,那么当前的节点就不安全了,所以必须把他的子节点中放塔的代价最小的点放塔,这样才能保证他的安全
}
int main()
{ scanf("%d",&n);
for(int i=1;i<n;i++)
{ int u,v;
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
treedp(1,-1);
printf("%d\n",min(f[1][0],f[1][2]));
return 0;
}

  

洛谷 P2899 [USACO08JAN]手机网络Cell Phone Network(树形动规)的更多相关文章

  1. 洛谷P2899 [USACO08JAN]手机网络Cell Phone Network

    P2899 [USACO08JAN]手机网络Cell Phone Network 题目描述 Farmer John has decided to give each of his cows a cel ...

  2. 洛谷 P2899 [USACO08JAN]手机网络Cell Phone Network

    题目描述 Farmer John has decided to give each of his cows a cell phone in hopes to encourage their socia ...

  3. P2899 [USACO08JAN]手机网络Cell Phone Network

    P2899 [USACO08JAN]手机网络Cell Phone Networ题目描述 Farmer John has decided to give each of his cows a cell ...

  4. luogu P2899 [USACO08JAN]手机网络Cell Phone Network |贪心

    include include include include include include define db double using namespace std; const int N=1e ...

  5. [USACO08JAN]手机网络Cell Phone Network

    [USACO08JAN]手机网络Cell Phone Network 题目描述 Farmer John has decided to give each of his cows a cell phon ...

  6. 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集(树形动规)

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  7. 缩点【洛谷P1262】 间谍网络

    [洛谷P1262] 间谍网络 题目描述 由于外国间谍的大量渗入,国家安全正处于高度的危机之中.如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B.有些间谍收受贿赂,只要给他们一定数量的美元,他 ...

  8. 洛谷 P1948 [USACO08JAN]电话线Telephone Lines

    P1948 [USACO08JAN]电话线Telephone Lines 题目描述 Farmer John wants to set up a telephone line at his farm. ...

  9. 洛谷 P1262 【间谍网络】

    题库 : 洛谷 题号 : 1262 题目 : 间谍网络 link : https://www.luogu.org/problemnew/show/P1262 思路 : 这题可以用缩点的思想来做.先用T ...

随机推荐

  1. BZOJ4644: 经典傻逼题【线段树分治】【线性基】

    Description 这是一道经典傻逼题,对经典题很熟悉的人也不要激动,希望大家不要傻逼. 考虑一张N个点的带权无向图,点的编号为1到N. 对于图中的任意一个点集 (可以为空或者全集),所有恰好有一 ...

  2. mac终端下修改MySQL的编码格式--找不到my-default.cnf及my.cnf

    首先请确认正确安装好MySQL. 1- 先配置环境变量path 1.1 打开终端,输入: cd ~ 会进入~文件夹, 1.2 然后输入:touch .bash_profile 回车执行后, 1.3 再 ...

  3. 414 - Machined Surfaces

    Sample Input (character "B" for ease of reading. The actual input file will use the ASCII- ...

  4. C#对Jason序列化匿名对象

    引用: using System.Web.Script.Serialization; 代码: var resp = new { flag = false, url = ConfigReader.Log ...

  5. String.valueof;和String = ""+1;的区别

    关于字符串的+操作,单纯的String  s ="" +11;编译器会看做常量""和常量11的拼接操作,常量计算最快:String.valueOf会调用方法,速 ...

  6. sql update set使用case when语句

    1. update TD_XXXsetdjyzmdm=null,djyzmsj=null,DLCS= case when DLCS is null then 1 else DLCS+1 end whe ...

  7. 推荐一个React 入门的教程

    推荐一个React 入门的教程 react 入门实例教程 Github地址:https://github.com/ruanyf/react-demos

  8. 显示等待WebDriverWait

    显示等待:WebDriverWait 等待页面加载完成,找到某个条件发生后再继续执行后续代码,如果超过设置时间检测不到则抛出异常 WebDriverWait(driver, timeout, poll ...

  9. SQL中禁用trigger

    SQL中禁用所有trigger   编写人:CC阿爸 2014-6-15 在日常SQL数据库的操作中,如何快速的禁用所有trigger? --禁用某个表上的所有触发器 ALTER  

  10. SpringBoot2.0实现静态资源版本控制

    写在最前面 犹记毕业第一年时,公司每次发布完成后,都会在一个群里通知[版本更新,各部门清理缓存,有问题及时反馈]之类的话.归根结底就是资源缓存的问题,浏览器会将请求到的静态资源,如JS.CSS等文件缓 ...