tags:

  • 扩展欧几里得
  • 二分答案
  • 查分
  • 倍增
  • 二分答案
  • 贪心
  • NOIP

    categories:
  • 信息学竞赛
  • 总结

同余方程

借教室

疫情控制

同余方程

Solution

  首先同余式可以转化为等式.

\[ax\equiv 1\mod b\Leftrightarrow ax+by=1
\]

  根据扩展欧几里得定理, 对于式

\[ax+by=k(a,b),k\in \mathbf{R}$$一定存在整数解.然而题面说一定存在解, 也就是说$(a,b)=1$, 然后就可以利用**扩展欧几里得**递归求得一组解.利用这组解加上**取模**, 就可以获得最小整数解.
#### Code
```c++
#include<cstdio>
void exgcd(int a,int b,int &x,int &y){
if(!b){
x=1,y=0;return ;
}
exgcd(b,a%b,y,x);
y-=x*(a/b);
}

int main(){
int a,b,x,y;
scanf("%d%d",&a,&b);
exgcd(a,b,x,y);
printf("%d",(x%b+b)%b);
return 0;
}
```
### 借教室
#### Solution
  可以发现近些年 NOIP 总是出**二分答案**的题.
  其实就是给出一些操作, 每次对一定区间减去一个数, 求在哪次操作之后产生了负数.然而可以用线段树强行做, 也可以用一些巧妙一点的办法.
- 线段树, 只需要有**区间加操作**和查询**区间最小值**操作, 一般线段树可以拿到95分, 还可以用可以各种**卡常技巧**, **zkw线段树**或者是**标记永久化**来加快.
- 二分一个值$\text{T}$, 表示前$\text{T}$次借教室后会不会出现不合法情况(*即某天教室只剩下负数间*), 然后用**差分**借完$T$次教室后每一天剩下的教室数.这个一般情况是不会被卡的.**注意对于答案的记录.**

#### Code
```c++
#include<cstring>
#include<cstdio>
#define N 1000055
#define inf 0x3f3f3f3f
#define int long long
struct Node{
int l,r,s;
void init(){scanf("%lld%lld%lld",&s,&l,&r);}
}s[N];

int n,m,d[N];
int qi[N];
int ans;

int min(int a,int b){
return a<b?a:b;
}

bool check(int tim){
qi[0]=0;
for(int i=1;i<=n;++i)
qi[i]=d[i]-d[i-1];
for(int i=1;i<=tim;++i)
qi[s[i].l]-=s[i].s,qi[s[i].r+1]+=s[i].s;
int he=0;
for(int i=1;i<=n+1;++i){he+=qi[i];if(he<0){ans=min(ans,tim);return false;}}
return true;
}

main(){
ans=inf;
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)
scanf("%lld",&d[i]);
for(int i=1;i<=m;++i)
s[i].init();
int l=1,r=m,mid;
while(l<=r){
mid=(l+r)>>1;
if(!check(mid))
r=mid-1;
else l=mid+1;
}
if(l>=m)
printf("0");
else printf("-1\n%lld",ans);
return 0;
}
```
### 疫情控制
  并不是很明白为什么一天会出两道二分答案的题目...
  首先二分一个值$\text{T}$, 表示在$\text{T}$时刻内能封锁这棵树
  还是有一个很重要的贪心策略, 就是一个点在到达根节点之前总是越往上走越好.然后根据**倍增**确定出每个点在给定时间$\text{T}$所到达的最高点(*根节点为终点*). 必然有一些点到达不了根节点, 那么就让它来控制这个点; 必然有在不同时间到达根节点的点, 这些点可以去控制根节点的不同没被控制的子树; 所以最后找出所有**没有被控制的树点**和**能到达根节点的军队**进行贪心即可.
  细节太多了, 很讨厌呐.\]

NOIP 2012 Day2的更多相关文章

  1. noip 2012 Day2 T2 借教室

    一.暴力简述 甩链接.jpeg 首先我们不难看出,这道题————并不是一道多难的题,因为显然,第一眼看题目时便很容易地想到暴力如何打:枚举每一种订单,然后针对每一种订单,对区间内的每一天进行修改(做减 ...

  2. NOIp 2012 #2 借教室 Label:区间修改线段树

    题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然 ...

  3. NOIp 2012 #1 Vigenère 密码 Label:模拟

    题目描述 16 世纪法国外交家 Blaise de Vigenère 设计了一种多表密码加密算法――Vigenère 密 码.Vigenère 密码的加密解密算法简单易用,且破译难度比较高,曾在美国南 ...

  4. NOIP 2012 Day2T2 借教室题解

    NOIP 2012 Day2T2 借教室题解 题目传送门:http://codevs.cn/problem/1217/ 题目描述 Description 在大学期间,经常需要租借教室.大到院系举办活动 ...

  5. NOIP 2012 T5 借教室 [洛谷P1083]

    题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要 向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自 ...

  6. 【NOIP 2012 疫情控制】***

    题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散 ...

  7. 【NOIP 2012 开车旅行】***

    题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的 城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 ...

  8. 【NOIP 2012 国王游戏】 贪心+高精度

    题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右 手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排 成一排,国王站在队伍 ...

  9. NOIP 2012 Vigenère 密码

    洛谷 P1079 Vigenère 密码 https://www.luogu.org/problemnew/show/P1079 JDOJ 1779: [NOIP2012]Vigenèr密码 D1 T ...

随机推荐

  1. Spring中事务传播行为类型

    Spring在TransactionDefinition接口中规定了7种类型的事务传播行为,它们规定了事务方法和事务方法发生嵌套调用时事务如何进行传播: 事务传播行为类型 说明 PROPAGATION ...

  2. 表单验证:nice Validator

    nice Validator使用文档:http://niceue.com/validator/ 一.自定义验证规则: //大类表单新增修改验证提交 $("#addbigCategory&qu ...

  3. 基于MeanShift的目标跟踪算法及实现

    这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法[matlab/c两个版本] csdn贴公式比较烦,原谅我直接截图了 ...

  4. C++之tinyXML的使用详解

    tinyXML一款很优秀的操作C++类库,文件不大,但方法很丰富,和apache的Dom4j可以披靡啊!习惯了使用java类库的我看到这么丰富的c++类库,很高兴!它使用很简单,只需要拷贝几个文件到你 ...

  5. 1143: [CTSC2008]祭祀river(最长反链)

    1143: [CTSC2008]祭祀river 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1143 Description: 在遥远的 ...

  6. JQuery学习六

    <JQuery cookie>插件 cookie是保存在浏览器上的内容,用户在这次浏览页面的时候向cookie中保存文本内容.下次再访问页面的时侯就可以取出来上次保存的内容.这样可以得到上 ...

  7. Python爬虫学习笔记之微信宫格验证码的识别(存在问题)

    本节我们将介绍新浪微博宫格验证码的识别.微博宫格验证码是一种新型交互式验证码,每个宫格之间会有一条 指示连线,指示了应该的滑动轨迹.我们要按照滑动轨迹依次从起始宫格滑动到终止宫格,才可以完成验证,如 ...

  8. 普通用户加sudo权限

    没配置之前希望在普通用户下,通过sudo命令,让用户暂时拥有root权限,并创建一个文件夹.很明显,失败了,错误原因是:该用户暂没有root权限.  解决办法如下 1.打开sudoers文件 切换到r ...

  9. Axis2 WebService(配置、发布、调用)

    准备工作 1.下载:axis2-1.5.4-bin.zip,axis2-1.5.4-war.zip 下载地址:http://axis.apache.org/axis2/java/core/ 2.环境变 ...

  10. Spring 学习笔记之整合Hibernate

    Spring和Hibernate处于不同的层次,Spring关心的是业务逻辑之间的组合关系,Spring提供了对他们的强大的管理能力, 而Hibernate完成了OR的映射,使开发人员不用再去关心SQ ...