Codeforces 934.D A Determined Cleanup
1 second
256 megabytes
standard input
standard output
In order to put away old things and welcome a fresh new year, a thorough cleaning of the house is a must.
Little Tommy finds an old polynomial and cleaned it up by taking it modulo another. But now he regrets doing this...
Given two integers p and k, find a polynomial f(x) with non-negative integer coefficients strictly less than k, whose remainder is p when divided by (x + k). That is, f(x) = q(x)·(x + k) + p, where q(x) is a polynomial (not necessarily with integer coefficients).
The only line of input contains two space-separated integers p and k (1 ≤ p ≤ 1018, 2 ≤ k ≤ 2 000).
If the polynomial does not exist, print a single integer -1, or output two lines otherwise.
In the first line print a non-negative integer d — the number of coefficients in the polynomial.
In the second line print d space-separated integers a0, a1, ..., ad - 1, describing a polynomial fulfilling the given requirements. Your output should satisfy 0 ≤ ai < k for all 0 ≤ i ≤ d - 1, and ad - 1 ≠ 0.
If there are many possible solutions, print any of them.
46 2
7
0 1 0 0 1 1 1
2018 214
3
92 205 1
In the first example, f(x) = x6 + x5 + x4 + x = (x5 - x4 + 3x3 - 6x2 + 12x - 23)·(x + 2) + 46.
In the second example, f(x) = x2 + 205x + 92 = (x - 9)·(x + 214) + 2018.
题目大意:给定k和p,要求一个多项式f(x) = q(x)(x+k) + p,其中f(x)的每个系数都是非负的,并且小于k.
分析:这道题看着有点难,其实分析出规律来以后挺简单的.
考虑构造q(x).先让常数项小于k,也就是让相乘后的常数项+p小于k.q(x)的常数项就是p / (-k).这样会产生一次项,那么继续消一次项.直到最后的p = 0.
原理其实就是q(x)的第i次项与k相乘,使得第i-1次项与k项乘的结果加上它以后小于k.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; typedef long long ll; ll p,k,ans[],cnt; ll get()
{
ll x = p % k;
if (x < )
x += k;
return x % k;
} int main()
{
cin >> p >> k;
while (p)
{
ans[++cnt] = get();
p -= get();
p /= (-k);
}
cout << cnt << endl;
for (int i = ; i <= cnt; i++)
cout << ans[i] << " "; return ;
}
Codeforces 934.D A Determined Cleanup的更多相关文章
- Codeforces 934D/933B - A Determined Cleanup
传送门:http://codeforces.com/contest/934/problem/D 给定两个正整数p(p≥1).k(k>1).多项式f(x)的系数的取值集合为{0,1,2,...,k ...
- Codeforces 934D - A Determined Cleanup
934D - A Determined Cleanup 思路: 找规律,和k进制的求法差不多,答案的奇数位是p%k,偶数位如果p%k!=0,那么答案是k-p%k,否则为0. 代码: #include& ...
- Codeforces Round #462 (Div. 2) D. A Determined Cleanup
D. A Determined Cleanup time limit per test1 second memory limit per test256 megabytes Problem Descr ...
- [codeforces934D]A Determined Cleanup
[codeforces934D]A Determined Cleanup 试题描述 In order to put away old things and welcome a fresh new ye ...
- [Codeforces 933B]A Determined Cleanup
Description 题库链接 给你两个正整数 \(p,k\) ,询问是否能够构造多项式 \(f(x)=\sum\limits_{i=0}^{d-1}a_ix^i\) ,使得存在多项式 \(q(x) ...
- Codeforces Round #464 (Div. 2) A Determined Cleanup
A. Love Triangle time limit per test1 second memory limit per test256 megabytes Problem Description ...
- 【Codeforces Round #462 (Div. 1) B】A Determined Cleanup
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 设\(设f(x)=a_d*x^{d}+a_{d-1}*x^{d-1}+...+a_1*x+a_0\) 用它去除x+k 用多项式除法除 ...
- Codeforces 934 A.Compatible Pair
http://codeforces.com/contest/934 A. A Compatible Pair time limit per test 1 second memory limit p ...
- Codeforces 934.C A Twisty Movement
C. A Twisty Movement time limit per test 1 second memory limit per test 256 megabytes input standard ...
随机推荐
- 深入理解java虚拟机学习笔记(二)垃圾回收策略
上篇文章介绍了JVM内存模型的相关知识,其实还有些内容可以更深入的介绍下,比如运行时常量池的动态插入,直接内存等,后期抽空再完善下上篇博客,今天来介绍下JVM中的一些垃圾回收策略. 一. ...
- egg- 配置
1. model module.exports = app => { const { INTEGER, STRING, TEXT } = app.Sequelize; const User = ...
- struts2之标签库
使用Struts2标签的准备工作: 导入Struts2标签库,该标签定义文件位于 struts2-core-2.3.16.3.jar 的 METE-INF下的struts-tag.tld文件. < ...
- 【版本控制——svn】
reposity_name //版本库 { Passwd //验证密码文件 Authz //权限控制 Server.conf //主配置 } Authz //权限控制 //由[groups]标签控 ...
- jquery 配合 ajax 完成 在线编辑 你值得拥有
思路分析: 将 table中的表格 改变成为 input表格框获得值 ajax配合修改 删除 <?php use yii\helpers\Url; $web = Url::base(); ?&g ...
- Elasticsearch和Head插件安装
环境: CentOS7 Elasticsearch-6.3.2 JDK8 准备: JDK8 下载地址:http://www.oracle.com/technetwork/java/javase/do ...
- MySQL触发器和更新操作
一.触发器概念 触发器(trigger):监视某种情况,并触发某种操作,它是提供给程序员和数据分析员来保证数据完整性的一种方法,它是与表事件相关的特殊的存储过程,它的执行不是由程序调用,也不是手工启动 ...
- linux命令随身记
赋予权限命令:chmod 755 * 查询进程: ps -ef |grep abc 查看含有"abc"的活动进程 ps -ef |grep -v abc 查看不含abc的活动进程 ...
- lintcode
public class Solution { /** * @param s: The first string * @param b: The second string * @return tru ...
- 写一个quick sort
#include <stdio.h> #include <stdlib.h> //int a[]={1000,10000,9,10,30,20,50,23,90,100,10} ...