洛谷 题解 P5535 【【XR-3】小道消息】
我又双叒叕被包菜辣!
P5535 【XR-3】小道消息(这道题是个大水题
在题干中这位良心的作者就提醒了我们:
你可能需要用到的定理——伯特兰-切比雪夫定理。
那么什么是伯特兰-切比雪夫定理?
我也不知道,但无所不知的度娘知道就行了:
若整数n > 3,则至少存在一个质数p,符合n < p < 2n − 2。另一个稍弱说法是:对于所有大于1的整数n,存在一个质数p,符合n < p < 2n。
那么这个定理有什么用?
因为是从n中选一个数k,所以k + 1一定大于1
是不是刚好和伯特兰-切比雪夫定理的条件相吻合?
没错,我们想一下,分两种情况:
1.如果k + 1为质数,再分两种:
I.1~n中不含k+1的倍数,那么很明显第一天就可以了
II.1~n中含k+1的倍数,那么需要几天?
两天,为什么?因为在第一天,所有除去k + 1倍数的数都知道了,那么gcd((2 * (k + 1)), (2 * (k + 1)) + 1) = 1是一定的。所以只需要两天。
2.如果k + 1不是质数:
也是两天,告诉拥有k+1的质数编号的人,然后通过伯特兰-切比雪夫定理n > 3,存在p 符合n < p < 2 * n;
蒟蒻可能讲的不是很清楚,大家多多包涵,自己可以感性理解一下。
#include<bits/stdc++.h>
using namespace std;
#define int long long //一定要开long long,不开long long 见祖先
int n, k;
bool prime(int x)//很清晰的质数筛
{
if(x == 1)//特判一下1
return 0;
if(x == 2)//特判一下2
return 1;
for(int i = 2; i <= sqrt(x); ++ i)//就是枚举每个数,看看它是否是它的约数
if(x % i == 0)//如果不是的话
return 0;//直接return false
return 1;
}
signed main()
{
scanf("%lld%lld", &n, &k);
if(prime(k + 1) && 2 * k >= n)//其实,也很好理解,想一想,如果一个数是质数那么是不是除去它的倍数的数都与它互质?所以prime(k + 1)是判断它是不是质数,后面就是找有没有它的倍数(因为是连续的所以只有比一下大小即可
printf("1");
else//除去1的答案就是二了(会有解释
printf("2");
return 0;
}
PS:请看懂再抄
洛谷 题解 P5535 【【XR-3】小道消息】的更多相关文章
- 洛谷 题解 UVA572 【油田 Oil Deposits】
这是我在洛谷上的第一篇题解!!!!!!!! 这个其实很简单的 我是一只卡在了结束条件这里所以一直听取WA声一片,详细解释代码里见 #include<iostream> #include&l ...
- 洛谷 题解 P1600 【天天爱跑步】 (NOIP2016)
必须得说,这是一道难题(尤其对于我这样普及组205分的蒟蒻) 提交结果(NOIP2016 天天爱跑步): OJ名 编号 题目 状态 分数 总时间 内存 代码 / 答案文件 提交者 提交时间 Libre ...
- 洛谷题解P4314CPU监控--线段树
题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...
- 洛谷题解 CF777A 【Shell Game】
同步题解 题目翻译(可能有童鞋没读懂题面上的翻译) 给你三张牌0,1,2. 最初选一张,然后依次进行n次交换,交换规则为:中间一张和左边的一张,中间一张和右边一张,中间一张和左边一张...... 最后 ...
- 洛谷题解 CF807A 【Is it rated?】
同步题解 题目 好吧,来说说思路: 1.先读入啦~(≧▽≦)/~啦啦啦 2.判断a[i]赛前赛后是否同分数,如果分数不同,则输出,return 0 . 3.如果同分数,则判断a[i]赛前(或赛后)是否 ...
- 洛谷题解 P1138 【第k小整数】
蒟蒻发题解了 说明:此题我用的方法为桶排(我翻了翻有人用了桶排只不过很难看出来,可能有些重复的,这个题只是作为一个专门的桶排来讲解吧) (不会算抄袭吧 ‘QWaWQ’) 简单来说(会的人跳过就行): ...
- 【洛谷题解】P2303 [SDOi2012]Longge的问题
题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...
- 洛谷题解 P2865 【[USACO06NOV]路障Roadblocks】
链接:https://www.luogu.org/problemnew/show/P2865 题目描述 Bessie has moved to a small farm and sometimes e ...
- 洛谷题解:P1209 【[USACO1.3]修理牛棚 Barn Repair】
原题传送门:https://www.luogu.org/problemnew/show/P1209 首先,这是一道贪心题. 我们先来分析它的贪心策略. 例如,样例: 4 50 18 3 4 6 ...
随机推荐
- P3097 [USACO13DEC]最优挤奶(线段树优化dp)
盲猜dp系列... 题意:给定序列,选了i就不能选与i相邻的两个,求最大值,带修改 蒟蒻在考场上10min打完以为只有两种情况的错解...居然能骗一点分... 先讲下当时的思路吧. f[i][0/1] ...
- P3976 [TJOI2015]旅游(未完成)
#include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #inc ...
- Python Socket学习之旅(二)
Socket函数 注解: Socket的close和shutdown--结束数据传输: close-----关闭本进程的socket id,但链接还是开着的,用这个socket id的其它进程还能用这 ...
- PHP str_replace的用法
PHP str_replace的用法 1 替换单个字符<pre><?phpecho str_replace("world","Shanghai" ...
- PHP关于access_token失效问题
PHP关于access_token失效问题 有时候PHP设置了缓存 明明就是没有过期 但却提示失效这情况一般就是1 多个appid和secrete 生成的access_token互相覆盖了 所以 这种 ...
- elastalter邮件告警
一:简介 ElastAlert是一个简单的框架,用于通过Elasticsearch中的数据异常警告,峰值或其他感兴趣的模式. 监控类型 "匹配Y时间内有X个事件的地方"(frequ ...
- SSM整合相关试题
1.下列关于Spring自动装配的说法中,错误的是() A 在Spring配置文件中,可以通过<bean>元素的autowire属性指定自动装配方式 B autowire属性值可以设置为n ...
- MySQL-配置环境变量及修改密码(附-mysql安装教程)
MySQL-配置环境变量和修改密码 mysql的安装教程:链接:https://pan.baidu.com/s/1rrPT2X0yRF58kN8jZZx-Mg 密码:55dh 一. 闪退问题 1.1. ...
- ASP.NET Core 1.0: Deploy to IIS
尽管ASP.NET最新的官方文档记录了如何Deploy to IIS,但是实际操作起来依旧磕磕绊绊.官方文档地址:https://docs.asp.net/en/latest/publishing/i ...
- 技术人如何利用 github+Jekyll ,搭建一个独立免费的技术博客
上次有人留言说,技术博客是程序员的标配,但据我所知绝大部分技术同学到现在仍然没有自己的技术博客.原因有很多,有的是懒的写,有的是怕写不好,还有的是一直想憋个大招,幻想做到完美再发出来,结果一直胎死腹中 ...