最近有一个项目,其中某个功能单表数据在可预估的未来达到了亿级,初步估算在90亿左右。与同事详细讨论后,决定采用一致性Hash算法来完成数据库的自动扩容和数据迁移。整个程序细节由我同事完成,我只是将其理解并成文,供有相同问题的同行参考。

参看此文的兄弟,默认各位已经熟悉一致性hash算法了。此文仅仅阐述代码细节,实现语言为Java

项目背景

  1. 项目是一个实验室项目
  2. 其中有一个表叫做试验表,用于存储车型的试验数据,每个试验大概有6000条数据
  3. 总计初期约有2万个车型,每个车型初期包含超过50个试验。后期还会动态增长
  4. 试验表中的数据仅需要根据车型试验ID能取出来即可,没有其他更复杂的业务逻辑

方案决策

项目正式上线初期,数据量不会直接爆发式增长到90亿,需要时间上的积累(逐步做实验),最终可能达到90亿数据,甚至超过90亿数据。

按照我们实际了解情况,oracle存储数据量达到1千万的时候,性能擅可。而Oracle官方的说法,如单表存储1g有分区(大致500万数据),查询效率非常高。而试验表中仅四个字段,每条数据数据量较小。所以我们最终决定以1000万为节点,水平拆表。当表数据达到1千万时,即增加下一波表。进行数据自动迁移。

按照90亿的总量,1000万数据一个表的划分,最终大致会产生900个左右的表。所以我们最终使用了4个数据库。1个存储其他业务模块的表,3个存储此大数据表。每个数据库大致有300张表。性能上和数量上都可达到我们的要求。

相关表结构

试验信息表(EXPERIMENT_MESSAGE),挂接车型和试验的关系。试验数据表(EXPERIMENT_DATA),存储试验数据

试验信息表:

字段 含义
ID 主键,采用UUID生成
EXPERIMENT_ID 试验表中的ID
CAR_ID 车型表中的ID
... 其余数十个字段省略

试验数据表:

字段 含义
ID 主键,采用UUID生成
EXPERIMENT_MESSAGE_ID 对应的实验信息id
X_VALUE 试验数据X值
Y_VALUE 试验数据Y值

我们采用作一致性hash的key,就是试验数据表中的EXPERIMENT_MESSAGE_ID字段。也就是说,每个试验数据表,不存则以,存则一次性大致有6000条数据。取同理。

一致性Hash算法实现

一致性Hash算法的hash部分,采用了著名的ketama算法。在此,我们不多讨论ketama算法的细节,若各位有兴趣,请查阅ketama算法

    public long hash(String key) {
if (md5 == null) {
try {
md5 = MessageDigest.getInstance("MD5");
} catch (NoSuchAlgorithmException e) {
throw new IllegalStateException("no md5 algorythm found");
}
} md5.reset();
md5.update(key.getBytes());
byte[] bKey = md5.digest(); long res = ((long) (bKey[3] & 0xFF) << 24) |
((long) (bKey[2] & 0xFF) << 16) |
((long) (bKey[1] & 0xFF) << 8) |
(long) (bKey[0] & 0xFF);
return res & 0xffffffffL;
}

有了Hash的算法,接下来就要构造Hash环了。Hash环采用的SortedMap数据结构实现。

private final SortedMap<Long, T> circle = new TreeMap<Long, T>();

其中添加节点和移除节点部分,需要根据hash算法得到节点在环上的位置,具体代码如下:

    /**
* 添加虚拟节点
* numberOfReplicas为虚拟节点的数量,初始化hash环的时候传入,我们使用300个虚拟节点
* @param node
*/
public void add(T node) {
for (int i = 0; i < numberOfReplicas; i++) {
circle.put(hashFunction.hash(node.toString() + i), node);
}
} /**
* 移除节点
* @param node
*/
public void remove(T node) {
for (int i = 0; i < numberOfReplicas; i++) {
circle.remove(hashFunction.hash(node.toString() + i));
}
}

而hash环中得到节点部分比较特殊,根据一致性hash算法的介绍,得到hash环中的节点,实际上是计算出的hash值顺时针找到的第一个节点。

     /**
* 获得一个最近的顺时针节点
* @param key 为给定键取Hash,取得顺时针方向上最近的一个虚拟节点对应的实际节点
* @return
*/
public T get(Object key) {
if (circle.isEmpty()) {
return null;
}
long hash = hashFunction.hash((String) key);
if (!circle.containsKey(hash)) {
//返回此映射的部分视图,其键大于等于 hash
SortedMap<Long, T> tailMap = circle.tailMap(hash);
hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();
}
return circle.get(hash);
}

单表拆分实践

上面完成了一致性hash算法的实现,包含了hash算法和hash环的实现。接下来就要处理具体业务中,如何使用这个hash环和算法了。

我们业务中,主要操作这张表的数据,也就是增删查。然后我们数据库拆分成了3个,所以需要增删查的操作基本一致,都是先通过一致性hash得到库,再通过一致性hash得到表。

获取数据库名的操作如下,获取到数据库后,根据数据库名到对应的连接池中获取连接。

    /**
* 根据试验信息id获取其所在库名
* DatabaseType为我们数据的枚举
* @return 数据库的名称
**/
private String getDataBase(String experimentMessageId) {
//获取数据源
DatabaseType[] databasetype = DatabaseType.values();
List<String> dataBaselist = new ArrayList<>();
Map<String, DatabaseType> map = new HashMap<>(); for (DatabaseType d:databasetype) {
if (!d.equals(DatabaseType.KC)) {
dataBaselist.add(d.toString());
map.put(d.toString(), d);
}
}
//获取数据源hash
ConsistentHash<String> dataBaseCon = getConsistentHash(dataBaselist); //获取id所在数据源
String dataBase = dataBaseCon.get(experimentMessageId);
return dataBase;
}

获取表名的操作如下,获取到数据库后,在对应的数据库中找到需要的表,再从该表中查询数据。

    /**
* 根据试验信息id获取其试验数据所在表
* @return
**/
public String getTableName(String experimentMessageId) {
String dataBase = getDataBase(experimentMessageId);
//查询所有试验数据表
List<String> tables = experimentDataEODao.queryTbaleNames(dataBase, tableName);
ConsistentHash<String> consistentHash = getConsistentHash(tables);
String tableName = consistentHash.get(experimentMessageId);
return tableName;
}

剩下的增删改操作和平常一致,在此不多赘述。

数据迁移实践

一致性hash势必涉及到数据迁移问题,我们采取的数据迁移方式为定时任务,针对每个数据库在每天夜里全量扫描一次。检查是否有数据量超过1000万的表,若存在这样的表,就把现有的表数量double。

数据迁移只会在同库之间迁移,不会涉及跨数据库的情况。

此方案为初步方案,后续会改进的更加智能,根据表的数量,增加不同数量的表。而不是简单的把表数量翻倍。

表创建后,将需要迁移的表数据逐个迁移。

在连接到数据源后,我们做了如下事情进行数据迁移

1.获取库中所有的表

 List<String> tables = getTables(connection, p, d.toString());

2.遍历表,检查表中数据是否超过边界线(我们为1000万)

 for (int i = 0; i < tables.size(); i++) {
//查询表内数据量
int num = countByTableName(connection, p, tables.get(i));
//finalNum为边界值,此处为1000万
if (num > finalNum) {
……
}
……
}

3.根据所有的表计算现有的虚拟节点

ConsistentHash<String> consistentHashOld = getConsistentHash(tables);

4.把表加倍

List<String> tablesNew = deepCopy(tables); //注意一定要采用深复制
int tableSize = tablesNew.size();
for (int y = 0; y < tableSize; y++) {
String tableNameNew = tableName + (tablesNew.size() + 1);
//创建表
createTable(connection, p, d.toString(), tableNameNew);
tablesNew.add(tableNameNew);
tableDelete.add(tableNameNew);
}

5.计算加倍后的虚拟节点

ConsistentHash<String> consistentHashNew = getConsistentHash(tablesNew);

6.数据迁移

for (int z = 0; z < tableSize; z++) {
String tableNameOld = tablesNew.get(z);
//查询试验信息id不重复的试验数据信息
List<String> disData = selectExperimentIdDis(connection, p, tableNameOld);
List<String> deleteList = new LinkedList<>();
for (String experimentId : disData) {
//如果数据hash计算 原所在表与新建表之后不一致,执行转移
if (!consistentHashNew.get(experimentId).equals(consistentHashOld.get(experimentId))) { //新增到新表数据
insertHash(connection, p, experimentId, consistentHashOld.get(experimentId),
consistentHashNew.get(experimentId)); //删除数据集合
deleteList.add(experimentId);
//删除旧表数据
final int defaultDelNum = 1000;
if (deleteList.size() == defaultDelNum) {
deleteInbatch(connection, p, deleteList, tableNameOld);
deleteList.clear();
}
}
} //删除旧表数据
if (deleteList.size() > 0) {
deleteInbatch(connection, p, deleteList, tableNameOld);
}
}

总结

以上为我们所做的一致性hash实践,其中还存在很多问题,比如迁移过程单线程导致迁移较慢、自动扩容机制不智能、迁移过程中数据访问不稳定等情况。

我们将会在后续的开发中逐步进行完善改进。

以上就是我们针对一致性hash在oracle分表中的实践

参考

一致性哈希算法原理

ketama算法

一致性Hash算法在数据库分表中的实践的更多相关文章

  1. 一致性hash算法以及其在分布式系统中的应用(转)

    初始架构

  2. 一致性hash算法在memcached中的使用

    一.概述 1.我们的memcacheclient(这里我看的spymemcache的源代码).使用了一致性hash算法ketama进行数据存储节点的选择.与常规的hash算法思路不同.仅仅是对我们要存 ...

  3. 一致性Hash算法在Redis分布式中的使用

    由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢? ...

  4. 一致性Hash算法在Memcached中的应用

    前言 大家应该都知道Memcached要想实现分布式只能在客户端来完成,目前比较流行的是通过一致性hash算法来实现.常规的方法是将server的hash值与server的总台数进行求余,即hash% ...

  5. (转) 一致性Hash算法在Memcached中的应用

    前言 大家应该都知道Memcached要想实现分布式只能在客户端来完成,目前比较流行的是通过一致性hash算法来实现.常规的方法是将 server的hash值与server的总台数进行求余,即hash ...

  6. jedis中的一致性hash算法

    [http://my.oschina.net/u/866190/blog/192286] jredis是redis的java客户端,通过sharde实现负载路由,一直很好奇jredis的sharde如 ...

  7. LB中使用到的一致性Hash算法的简单实现

    1.类的Diagram 2.代码实现 2.1.Node类,每个Node代表集群里面的一个节点或者具体说是某一台物理机器: package consistencyhash; import lombok. ...

  8. 什么是一致性Hash算法?

    一.Redis集群的使用 我们在使用Redis的时候,为了保证Redis的高可用,提高Redis的读写性能,最简单的方式我们会做主从复制,组成Master-Master或者Master-Slave的形 ...

  9. 一致性hash算法及java实现

    一致性hash算法是分布式中一个常用且好用的分片算法.或者数据库分库分表算法.现在的互联网服务架构中,为避免单点故障.提升处理效率.横向扩展等原因,分布式系统已经成为了居家旅行必备的部署模式,所以也产 ...

随机推荐

  1. Gitlab_ansible_jenkins三剑客④jenkins安装图解及freestyle的简单使用

    java环境准备 # 安装jdk1.8 [root@node02 ~]# rpm -ivh jdk-8u181-linux-x64.rpm vim /etc/profile export JAVA_H ...

  2. 3D 散点图的绘制

    一般情况下,我们用到最多的是axes3d() 中的axes3d.Axes3D()类,AxesD() 类下面存在散点图,线性图,柱状图,曲线图等各种制图方式. 采用matplotlib 生成散点图. 一 ...

  3. linux 下修改网关mac地址

    以rtl8196e为例 eth0:mac 地址设为123456789012 # flash set hw_nic0_addr  123456789012 eth1:mac 地址设为1122334455 ...

  4. C# 高级编程02----手动创建C#程序

    在日常工作中使用C# 开发的时候,通常使用宇宙第一神器VS进行开发.为了了解编译过程,这里采用文本编辑器的方式编写一个C#程序 一.创建一个C#程序 1.使用记事本工具创建一个名为First.cs的文 ...

  5. Django组件之用户认证组件

    一.auth模块 from django.contrib import auth django.contrib.auth中提供了许多方法,这里主要介绍其中的三个: 1.1 .authenticate( ...

  6. listagg within group

    oracle 多行合并成一行: listagg within group 可以和递归方法一起使用查询路径: 例如: SELECT LISTAGG(t.FOLDER_NAME, '/') WITHIN ...

  7. 在django中使用redis

    方式一 utils文件夹下,简历redis_pool.py import redis POOL = redis.ConnectionPool(host='127.0.0.1', port=6379,p ...

  8. Python学习笔记十一

    1. 协程 并发的解决方案: 多进程      多线程      什么叫并发:看起来同时进行 如何实现并发:切换+保存状态 进程线程都是由操作系统调度的 协程:单线程下实现的并发,应用程序级别的切换, ...

  9. 编译php-5.3.28

    1. 下载php-5.3.28 2. 编译/安装 ./configure --prefix=/usr/local/php --enable-fpm --enable-maintainer-zts -- ...

  10. 【转】vscode调试运行c#详细操作过程

    [转]vscode调试运行c#详细操作过程 主要命令: //路径跳转cd //新建项目dotnet new console -o 路径 //运行dotnet run //用于发布exe<Runt ...