Balls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1110   Accepted: 721

Description

The classic Two Glass Balls brain-teaser is often posed as:

"Given two identical glass spheres, you would like to determine the lowest floor in a 100-story building from which they will break when dropped. Assume the spheres are undamaged when dropped below this point. What is the strategy that will minimize the worst-case scenario for number of drops?"

Suppose that we had only one ball. We'd have to drop from each floor from 1 to 100 in sequence, requiring 100 drops in the worst case.

Now consider the case where we have two balls. Suppose we drop the first ball from floor n. If it breaks we're in the case where we have one ball remaining and we need to drop from floors 1 to n-1 in sequence, yielding n drops in the worst case (the first ball is dropped once, the second at most n-1 times). However, if it does not break when dropped from floor n, we have reduced the problem to dropping from floors n+1 to 100. In either case we must keep in mind that we've already used one drop. So the minimum number of drops, in the worst case, is the minimum over all n.

You will write a program to determine the minimum number of drops required, in the worst case, given B balls and an M-story building.

Input

The first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of data sets that follow. Each data set consists of a single line containing three(3) decimal integer values: the problem number, followed by a space, followed by the number of balls B, (1 ≤ B ≤ 50), followed by a space and the number of floors in the building M, (1 ≤ M ≤ 1000).

Output

For each data set, generate one line of output with the following values: The data set number as a decimal integer, a space, and the minimum number of drops needed for the corresponding values of B and M.

Sample Input

4
1 2 10
2 2 100
3 2 300
4 25 900

Sample Output

1 4
2 14
3 24
4 10

Source

题目大意:鹰蛋问题.n个蛋,m层楼. 存在一层楼E,使得E以及E以下的楼层鹰蛋都不会摔碎,问最坏情况下最少多少次能够知道E.
分析:这是一道神奇的题目.不仅仅是题目类型非常特别,优化也很多.具体的优化可以去看论文:传送门,这里只想说说这类问题如何下手.
   题目的目的是最小化最大值,似乎可以二分?可是什么都不知道要怎么判断可行性啊......正确的解法是dp.状态很明显:
   f[i][j]表示i个蛋,确定j层楼的E的答案. 如果当前在第k层扔蛋,两种可能:
   1.蛋碎了,那么还剩下i-1个蛋,第j层不是E层,还有j-1层需要确定,可以从f[i-1][j-1]转移而来. 
   2.蛋没碎,还剩下i个蛋,第k层以下都不可能是E层了,还剩下j-k层需要确定.那么从f[i][j - k]转移而来. 注意,这里的从上往下数j-k层和从下往上数j-k层本质上是没有区别的,所以可以把这j-k层看作一个新的高j-k层的楼.
   接着就是重中之重了,如何转移? 事情总是朝着最坏的方向发展的. 第k层会不会摔碎实际上是不能确定的!要从最坏的状态转移而来!那么状态转移方程就是:f[i][j] = min{max{f[i-1][j-1],f[i][j - k]} + 1,f[i][j]}. 
   脑洞不大的话理解起来确实有点困难,比较好的方法是倒着看.从第k层状态的不确定性来从最坏的情况转移而来.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int inf = 0x7ffffff;
int T;
int cas,n,m,f[][]; void solve()
{
memset(f,/,sizeof(f));
for (int i = ; i <= n; i++)
f[i][] = ;
for (int i = ; i <= m; i++)
f[][i] = i;
for (int i = ; i <= n; i++)
for (int j = ; j <= m; j++)
for (int k = ; k <= j; k++)
f[i][j] = min(f[i][j],max(f[i - ][k - ],f[i][j - k]) + );
} int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%d%d%d",&cas,&n,&m);
solve();
printf("%d %d\n",cas,f[n][m]);
} return ;
}

poj3783 Balls的更多相关文章

  1. [POJ3783]Balls 题解

    题目大意 鹰蛋问题.$ n\(个蛋,\)m\(层楼. 存在一层楼\)E\(,使得\)E\(以及\)E\(以下的楼层鹰蛋都不会摔碎,问最坏情况下最少多少次能够知道\)E$. 非常经典的模型,初看题目根本 ...

  2. HDU5781 ATM Mechine(DP 期望)

    应该是machine 和POJ3783 Balls类型相似. 现在上界为i元,猜错次数最多为j时,开始猜测为k元,有两种情况: 1 猜中:(i - k + 1) * dp[i - k][j] 2 猜不 ...

  3. 蓝桥杯-摔手机问题【dp】

    非常详细的题解:戳这里 例题:poj-3783 Balls Balls Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 115 ...

  4. Codeforces554 C Kyoya and Colored Balls

    C. Kyoya and Colored Balls Time Limit: 2000ms Memory Limit: 262144KB 64-bit integer IO format: %I64d ...

  5. 13 Balls Problem

    今天讨论的是称球问题. No.3 13 balls problem You are given 13 balls. The odd ball may be either heavier or ligh ...

  6. Open judge C16H:Magical Balls 快速幂+逆元

    C16H:Magical Balls 总时间限制:  1000ms 内存限制:  262144kB 描述 Wenwen has a magical ball. When put on an infin ...

  7. hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...

  8. hdu 3635 Dragon Balls(并查集)

    Dragon Balls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  9. POJ 3687 Labeling Balls()

    Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: 2636 Descri ...

随机推荐

  1. 【坚持】Selenium+Python学习之从读懂代码开始 DAY2

    2018/05/10 [来源:菜鸟教程](http://www.runoob.com/python3/python3-examples.html) #No.1 # 二次方程式 ax**2 + bx + ...

  2. 基于Mininet测量路径的损耗率

    基于Mininet测量路径的损耗率 控制器采用POX,基于OVS仿真 Mininet脚本 创建Node mininet.node Node 创建链路连接 mininet.link TCLink 设置i ...

  3. openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 三

    openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一 openstack-r版(rocky)搭建基于centos7.4 的openstac ...

  4. ionic 开发实例

    ionic 开发实例 一.ionic初始化项目 1:安装ionic npm install -g ionic 2:初始化项目框架 我们可以用命令创建一个应用程序,可以使用我们的一个现成的应用程序模板, ...

  5. $_SERVER的详细参数整理下

    PHP编程中经常需要用到一些服务器的一些资料,特把$_SERVER的详细参数整理下,方便以后使用. $_SERVER['PHP_SELF'] #当前正在执行 脚本的文件名,与 document roo ...

  6. Hadoop环境搭建01

    根据马士兵老师的Hadoop进行的配置 1.首先列下来需要用到的软件 VirtulBox虚拟机.Centos7系统镜像.xshell.xftp.jdk安装包.hadoop-2.7.0安装包 2.在Vi ...

  7. 寒假作业2——Pintia小作业及编程题

    编程题(电梯)       Click to Github       听华一大大说可以用回溯算法,熟练运用搜索引擎的我就百度了一下,琢磨了很多天以为自己会了,真的看到题目还是一脸懵逼(#`-_ゝ-) ...

  8. lintcode-488-快乐数

    488-快乐数 写一个算法来判断一个数是不是"快乐数". 一个数是不是快乐是这么定义的:对于一个正整数,每一次将该数替换为他每个位置上的数字的平方和,然后重复这个过程直到这个数变为 ...

  9. phpdisk 盲注 &前台任意用户登录

    代码审核 文件 plugins\phpdisk_client\passport.php 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 $str ...

  10. QMdiArea及QMdiSubWindow实现父子窗口及布局方法

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QMdiArea及QMdiSubWindow实现父子窗口及布局方法     本文地址:http ...