"""Performs face alignment and calculates L2 distance between the embeddings of images."""

# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function from scipy import misc
import tensorflow as tf
import numpy as np
import sys
import os
import argparse
import facenet
import align.detect_face def main():
model = "../models/20170216-091149"
image_files = ['compare_images/index10.png', 'compare_images/index73.png']
image_size = 160
margin = 44
gpu_memory_fraction = 0.5 images = load_and_align_data(image_files, image_size, margin, gpu_memory_fraction)
with tf.Graph().as_default(): with tf.Session() as sess: # Load the model
facenet.load_model(model) # Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # Run forward pass to calculate embeddings
feed_dict = { images_placeholder: images, phase_train_placeholder:False }
emb = sess.run(embeddings, feed_dict=feed_dict) nrof_images = len(image_files) print('Images:')
for i in range(nrof_images):
print('%1d: %s' % (i, image_files[i]))
print('') # Print distance matrix
print('Distance matrix')
print(' ', end='')
for i in range(nrof_images):
print(' %1d ' % i, end='')
print('')
for i in range(nrof_images):
print('%1d ' % i, end='')
for j in range(nrof_images):
dist = np.sqrt(np.sum(np.square(np.subtract(emb[i,:], emb[j,:]))))
print(' %1.4f ' % dist, end='')
print('') def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in range(nrof_samples):
img = misc.imread(os.path.expanduser(image_paths[i]))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
det = np.squeeze(bounding_boxes[0,0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list[i] = prewhitened
images = np.stack(img_list)
return images # def parse_arguments(argv):
# parser = argparse.ArgumentParser()
#
# parser.add_argument('model', type=str, default="./models/20170216-091149",
# help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file')
# parser.add_argument('image_files', type=str, default="src/compare_images/index10.png src/compare_images/index73.png "
# , nargs='+', help='Images to compare')
# parser.add_argument('--image_size', type=int,
# help='Image size (height, width) in pixels.', default=160)
# parser.add_argument('--margin', type=int,
# help='Margin for the crop around the bounding box (height, width) in pixels.', default=44)
# parser.add_argument('--gpu_memory_fraction', type=float,
# help='Upper bound on the amount of GPU memory that will be used by the process.', default=0.5)
# return parser.parse_args(argv) if __name__ == '__main__':
main()
"""Validate a face recognizer on the "Labeled Faces in the Wild" dataset (http://vis-www.cs.umass.edu/lfw/).
Embeddings are calculated using the pairs from http://vis-www.cs.umass.edu/lfw/pairs.txt and the ROC curve
is calculated and plotted. Both the model metagraph and the model parameters need to exist
in the same directory, and the metagraph should have the extension '.meta'.
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import os
import sys
import math
from sklearn import metrics
from scipy.optimize import brentq
from scipy import interpolate
import numpy
from PIL import Image,ImageDraw
import cv2 from scipy import misc
import argparse
import align.detect_face def detetet_face_init():
cap = cv2.VideoCapture(0)
print(cap.isOpened())
classifier=cv2.CascadeClassifier("./xml/haarcascade_frontalface_alt.xml")
count=0
return cap,classifier,count def detect_face_clear():
cap.release()
cv2.destroyAllWindows() def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction): minsize = 20 # minimum size of face
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold
factor = 0.709 # scale factor print('Creating networks and loading parameters')
with tf.Graph().as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None) nrof_samples = len(image_paths)
img_list = [None] * nrof_samples
for i in range(nrof_samples):
img = misc.imread(os.path.expanduser(image_paths[i]))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes, _ = align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
det = np.squeeze(bounding_boxes[0,0:4])
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img_size[1])
bb[3] = np.minimum(det[3]+margin/2, img_size[0])
cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
aligned = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
prewhitened = facenet.prewhiten(aligned)
img_list[i] = prewhitened
images = np.stack(img_list)
return images def compare_facevec(facevec1, facevec2):
dist = np.sqrt(np.sum(np.square(np.subtract(facevec1, facevec2))))
#print(' %1.4f ' % dist, end='')
return dist def face_recognition_using_facenet():
cap,classifier,count = detetet_face_init()
model = "../models/20170216-091149"
image_files = ['compare_images/index10.png', 'compare_images/index73.png']
image_size = 160
margin = 44
gpu_memory_fraction = 0.5
with tf.Graph().as_default():
with tf.Session() as sess:
# Load the model
facenet.load_model(model) # Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") #image_size = images_placeholder.get_shape()[1] # For some reason this doesn't work for frozen graphs
image_size = 160
embedding_size = embeddings.get_shape()[1]
index = 0
th = 0.7
face_recognition_tag = True
color = (0,255,0)
exist_face_vec = []
face_detect_vec = []
while count > -1:
ret,img = cap.read()
faceRects = classifier.detectMultiScale(img, 1.2, 2, cv2.CASCADE_SCALE_IMAGE,(20,20))
if len(faceRects)>0:
for faceRect in faceRects:
x, y, w, h = faceRect
#cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0)
#print "save faceimg"
face_win = img[int(y):int(y) + int(h), int(x):int(x) + int(w)]
face_detect = cv2.resize(face_win,(image_size,image_size),interpolation=cv2.INTER_CUBIC)
#cv2.imwrite('faceimg/index' + str(index) + '.bmp', face_win)
# Run forward pass to calculate embeddings
#print('Runnning forward pass on face detect')
nrof_samples = 1
img_list = [None] * nrof_samples
prewhitened = facenet.prewhiten(face_detect)
img_list[0] = prewhitened
images = np.stack(img_list)
if index == 10:
feed_dict = {images_placeholder:images, phase_train_placeholder:False }
exist_face_vec = sess.run(embeddings, feed_dict=feed_dict)
elif index > 10 and index % 10 == 0:
feed_dict = {images_placeholder:images, phase_train_placeholder:False }
face_detect_vec = sess.run(embeddings, feed_dict=feed_dict)
cp = compare_facevec(face_detect_vec, exist_face_vec)
print("index ", index, " dist ", cp)
if cp < th:
print(True)
face_recognition_tag = True
else:
print(False)
face_recognition_tag = False
index +=1
# if face_recognition_tag == True:
# cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (255,0,0), 2,0)
# else:
# cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0)
cv2.rectangle(img, (int(x), int(y)), (int(x)+int(w), int(y)+int(h)), (0,255,0), 2,0) cv2.imshow('video',img)
key=cv2.waitKey(1)
if key==ord('q'):
break
detect_face_clear(cap) if __name__ == '__main__':
face_recognition_using_facenet()

python 人脸识别的更多相关文章

  1. Python人脸识别最佳教材典范,40行代码搭建人脸识别系统!

    Face Id是一款高端的人脸解锁软件,官方称:"在一百万张脸中识别出你的脸."百度.谷歌.腾讯等各大企业都花费数亿来鞭策人工智能的崛起,而实际的人脸识别技术是否有那么神奇? 绿帽 ...

  2. python人脸识别

    需要掌握知识python,opencv和机器学习一类的基础 过一段时间代码上传github,本人菜j一个,虽然是我自己谢的,也有好多不懂,或者我这就是错误方向 链接:https://pan.baidu ...

  3. 【python人脸识别】使用opencv识别图片中的人脸

    概述: OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库 为什么有OpenCV? 计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种: 1.研究 ...

  4. Python人脸识别 + 手机推送,老板来了你就会收到短信提示

  5. 总结几个简单好用的Python人脸识别算法

    原文连接:https://mp.weixin.qq.com/s/3BgDld9hILPLCIlyysZs6Q 哈喽,大家好. 今天给大家总结几个简单.好用的人脸识别算法. 人脸识别是计算机视觉中比较常 ...

  6. OpenCV+python 人脸识别

    首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要 ...

  7. 简单的 Python 人脸识别实例

    案例一 导入图片 思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口 # 1.导入库 import cv2 # 2.加载图片 img = cv2.imread(' ...

  8. python人脸识别项目face-recognition

    该项目基于Github上面的开源项目人脸识别face-recognition,主要是对图像和视频中的人脸进行识别,在开源项目给出的例子基础上对视频人脸识别的KNN算法进行了实现. 0x1 工程项目结构 ...

  9. python 人脸识别试水(一)

    1.安装python,在这里我的版本是python 3.6 2.安装pycharm,我的版本是pycharm 2017 3.安装pip  pip 版本10 4.安装 numpy    :pip ins ...

随机推荐

  1. git config 的全局配置

    使用git的全局配置   .gitconfig 一:修改 用户下的.gitconfig 修改如图信息,添加你的信息 二: 命令添加 $ git config --global user.name   ...

  2. 【LeetCode】99. Recover Binary Search Tree

    Recover Binary Search Tree Two elements of a binary search tree (BST) are swapped by mistake. Recove ...

  3. Yii::记录日志到自定义文件

    默认情况下,Yii::log($msg, $level, $category)会把日志记录到runtime/application.log文件中 日志格式如下: [时间] - [级别] - [类别] ...

  4. NS3网络仿真(6): 总线型网络

    快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载.但请保留作者信息 在NS3提供的第一个演示样例first.py中,模拟了一个点对点的网络,接下来的一个演示样例代码模 ...

  5. C++ 多线程(两个线程卖火车票)

    #include <windows.h> #include <iostream.h> DWORD WINAPI Fun1Proc(LPVOID lpParameter);//t ...

  6. JS 对象的属性如果没有就初始化

    function fuck (inObj, path, parms) { // 一个长得像对象的字符串 var Things = path.split("."); // 即将返回的 ...

  7. ubuntu下查找jdk安装位置

    which javac 返回/usr/bin/javac file /usr/bin/javac 返回/usr/bin/javac: symbolic link to `/etc/alternativ ...

  8. SQLSERVER中的timestamp 和 C#中的byte[] 转换

    项目中由于需求设计,数据库中需要一个timestamp时间戳类型的字段来作为区别数据添加和修改的标识.由于timestamp在SQL SERVER 2005数据库中,不可为空的timestamp类型在 ...

  9. Qt 2D绘图高级篇

    1.拖动模式 在QGraphicView中提供了三种拖动模式,分别是: QGraphicsView::NoDrag :忽略鼠标事件,不可以拖动. QGraphicsView::ScrollHandDr ...

  10. UIScrollView 滚动视图—IOS开发

    转自:http://blog.csdn.net/iukey/article/details/7319314 UIScrollView 类负责所有基于 UIKit 的滚动操作. 一.创建 CGRect  ...