4.tensorflow——CNN
1.CNN结构:X-->CONV(relu)-->MAXPOOL-->CONV(relu)-->FC(relu)-->FC(softmax)-->Y
1.1 卷积层:提取特征,改变特征图的个数
- 卷积
- tensorflow卷积函数,tf.nn.conv2d(input=x,filter=W_conv1,strides=[1,1,1,1],padding='SAME')
1.2 池化层:缩小图片,不改变特征图个数
- 针对卷积层输出的特征图结果,为了提取一定区域的主要特征,并减少参数数量,防止模型过拟合。
- 除了MaxPooling,还有AveragePooling,顾名思义就是取那个区域的平均值。
- tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
- 池化带来的结果就是:图片缩小啦
1.3 全链层:特征组合
- 先将多维的数据进行“扁平化”,也就是把 (height,width,channel)的数据压缩成长度为 height × width × channel 的一维数组,然后再与 FC层连接,这之后就跟普通的神经网络无异了。
1.4 输出分类
2.相关辅助操作
- tf.truncated_normal(),截断正态分布随机数,https://blog.csdn.net/justgg/article/details/94362621
其他补充知识
1.卷积
- 滤波器(filter,也称为kernel),大小3×3。
- 用这个filter,往我们的图片上“盖”,覆盖一块跟filter一样大的区域之后,对应元素相乘,然后求和。计算一个区域之后,就向其他区域挪动,接着计算,直到把原图片的每一个角落都覆盖到了为止。这个过程就是 “卷积”。
- 通过设计特定的filter,让它去跟图片做卷积,就可以识别出图片中的某些特征,比如边界。
- CNN(convolutional neural network),主要就是通过一个个的filter,不断地提取特征,从局部的特征到总体的特征,从而进行图像识别等等功能。
- 这些filter及每个filter中的各个数字,就是参数,可以通过大量的数据,来 让机器自己去“学习”这些参数嘛。这,就是CNN的原理。
2.padding 填白
- 每次卷积,图像都缩小,这样卷不了几次就没了;
- 相比于图片中间的点,图片边缘的点在卷积中被计算的次数很少。这样的话,边缘的信息就易于丢失。
- 采用padding的方法。我们每次卷积前,先给图片周围都补一圈空白,让卷积之后图片跟原来一样大,同时,原来的边缘也被计算了更多次。
3.对多通道(channels)图片的卷积
- 输入图片是三维的(即增多了一个channels),比如是(8,8,3)
- filter的维度:(3,3,3),最后一维要跟输入的channel维度一致。这个时候的卷积,是三个channel的所有元素对应相乘后求和,也就是之前是9个(3X3)乘积的和,现在是27个(3X3X3)乘积的和。
- 如果用4个filter,则输出的维度则会变为(6,6,4)
4.激活函数
5.softmax
- Softmax函数常用来最后的一层,并作为输出层进行多分类判别。
6.损失函数
卷积神经网络的精髓
1.CNN,无非就是把FC改成了CONV和POOL,就是把传统的由一个个神经元组成的layer,变成了由filters组成的layer。
- 参数共享机制(parameters sharing)
那这一层我们需要多少个参数呢?需要 64×9 = 576个参数(先不考虑偏置项b)。因为每一个链接都需要一个权重w。
- 因为,对于不同的区域,我们都共享同一个filter,因此就共享这同一组参数。
- filter是用来检测特征的,那一个特征一般情况下很可能在不止一个地方出现,比如“竖直边界”,就可能在一幅图中多出出现,那么 我们共享同一个filter不仅是合理的,而且是应该这么做的。
- 由此可见,参数共享机制,让我们的网络的参数数量大大地减少。这样,我们可以用较少的参数,训练出更加好的模型,典型的事半功倍,而且可以有效地 避免过拟合。
同样,由于filter的参数共享,即使图片进行了一定的平移操作,我们照样可以识别出特征,这叫做 “平移不变性”。
2.连接的稀疏性(sparsity of connections)
- 由卷积的操作可知,输出图像中的任何一个单元,只跟输入图像的一部分有关系:
- 传统神经网络中,由于都是全连接,所以输出的任何一个单元,都要受输入的所有的单元的影响。这样无形中会对图像的识别效果大打折扣。比较,每一个区域都有自己的专属特征,我们不希望它受到其他区域的影响。
1.lrn层https://blog.csdn.net/banana1006034246/article/details/75204013
2.数据集:www.cs.toronto.edu/~kriz/cifar.html
参考:https://www.jianshu.com/p/c0215d26d20a
4.tensorflow——CNN的更多相关文章
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- Tensorflow&CNN:验证集预测与模型评价
版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90480140 - 写在前面 本科毕业设计终于告一段落了.特 ...
- Tensorflow&CNN:裂纹分类
版权声明:本文为博主原创文章,转载 请注明出处:https://blog.csdn.net/sc2079/article/details/90478551 - 写在前面 本科毕业设计终于告一段落了.特 ...
- 强智教务系统验证码识别 Tensorflow CNN
强智教务系统验证码识别 Tensorflow CNN 一直都是使用API取得数据,但是API提供的数据较少,且为了防止API关闭,先把验证码问题解决 使用Tensorflow训练模型,强智教务系统的验 ...
- tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...
- Python Tensorflow CNN 识别验证码
Python+Tensorflow的CNN技术快速识别验证码 文章来源于: https://www.jianshu.com/p/26ff7b9075a1 验证码处理的流程是:验证码分析和处理—— te ...
- python,tensorflow,CNN实现mnist数据集的训练与验证正确率
1.工程目录 2.导入data和input_data.py 链接:https://pan.baidu.com/s/1EBNyNurBXWeJVyhNeVnmnA 提取码:4nnl 3.CNN.py i ...
- TensorFlow CNN 測试CIFAR-10数据集
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50738311 1 CIFAR-10 数 ...
- TensorFlow CNN 测试CIFAR-10数据集
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50738311 1 CIFAR-10 数 ...
- TensorFlow——CNN卷积神经网络处理Mnist数据集
CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...
随机推荐
- JPA Example查询
//创建查询条件数据对象 Customer customer = new Customer(); customer.setAddress("河南省郑州市"); customer.s ...
- df认识
import pandas as pd #自己创建一个df df = pd.DataFrame({ ,,], 'col2':["zs",'li','zl'], 'col3':[3. ...
- jsp页面注册验证问题
<script type="text/javascript"> $(function(){ // 错误消息提示 var msg = "${msg}" ...
- Codeforces 1162D Chladni Figure(枚举因子)
这个题好像可以直接暴力过.我是先用num[len]统计所有每个长度的数量有多少,假如在长度为len下,如果要考虑旋转后和原来图案保持一致,我们用a表示在一个旋转单位中有几个长度为len的线段,b表示有 ...
- python开发之路-day02
一.数据类型 1 什么是数据? name='sunkedong'#字符串类型 age=24 #整型 date=2017.9#浮点型 dic={'name':'sunkedong','age':16}# ...
- 10: Django + Uwsgi + Nginx 的生产环境部署
1.1 一些重要概念 1.Web协议介绍 Web协议出现顺序: CGI -> FCGI -> WSGI -> uwsgi 1. CGI: 最早的协议 2. FCGI: 比CGI快 ...
- navigate连接不上Centos7+mariadb的问题
链接数据库时忽然遇到一个问题.Mac Navicat链接时报错Can’t connect to MySQL server on ‘xx.xx.xx.xx’ (61). PS. win版Navicat ...
- smbspool - 将一个打印文件发送到一台SMB打印机
总览 SYNOPSIS smbspool {job} {user} {title} {copies} {options} [filename] 描述 DESCRIPTION 此程序是Samba(7)套 ...
- Python3.5-20190529-自动登录百度
- ElasticSearch 单台服务器部署多个节点
转载:https://www.cnblogs.com/wxw16/p/6160186.html 一般情况下单台服务器只会部署一个ElasticSearch node,但是在学习过程中,很多情况下会需要 ...