Segments
Time Limit: 1000MS   Memory Limit: 65536K
     

Description

Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1y1) and (x2y2) are the coordinates of the two endpoints for one of the segments.

Output

For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

Sample Input

3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0

Sample Output

Yes!
Yes!
No!
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=2e6+,inf=1e9+;
const LL INF=1e18+,mod=,MOD=;
const double eps=1e-,pi=(*atan(1.0)); int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
double Cross(Point p0,Point p1,Point p2) //p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn(Cross(l2.s,l1.s,l1.e))*sgn(Cross(l2.e,l1.s,l1.e)) <= ;
}
Point a[N],b[N];
double dist(Point a,Point b)
{
return sqrt( (b - a)*(b - a) );
}
int check1(Line x,int n)
{
if(sgn(dist(x.s,x.e))==)return ;
for(int k=;k<=n;k++)
{
Line now=Line(a[k],b[k]);
if(!Seg_inter_line(x,now))return ;
}
return ;
}
int check(int n)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
Line l1=Line(a[i],a[j]),l2=Line(a[i],b[j]),l3=Line(b[i],a[j]),l4=Line(b[i],b[j]);
if(check1(l1,n)||check1(l2,n)||check1(l3,n)||check1(l4,n))return ;
}
}
return ;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
double x1,y1,x2,y2;
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
a[i]=Point(x1,y1),b[i]=Point(x2,y2);
}
if(check(n))printf("Yes!\n");
else printf("No!\n");
}
return ;
}

poj 3304 Segments 线段与直线相交的更多相关文章

  1. POJ 3304 segments 线段和直线相交

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14178   Accepted: 4521 Descrip ...

  2. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  3. POJ 3304 /// 判断线段与直线是否相交

    题目大意: 询问给定n条线段 是否存在一条直线使得所有线段在直线上的投影存在公共点 这个问题可以转化为 是否存在一条直线与所有的线段同时相交 而枚举直线的问题 因为若存在符合要求的直线 那么必存在穿过 ...

  4. poj 3304 Segments(计算直线与线段之间的关系)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10921   Accepted: 3422 Descrip ...

  5. POJ 3304 Segments | 线段相交

    #include<cstdio> #include<algorithm> #include<cstring> #define N 105 #define eps 1 ...

  6. POJ 3304 Segments(线的相交判断)

    Description Given n segments in the two dimensional space, write a program, which determines if ther ...

  7. POJ 3304 Segments(计算几何:直线与线段相交)

    POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...

  8. POJ 3304 Segments 判断直线和线段相交

    POJ 3304  Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...

  9. POJ 3304 Segments (判断直线与线段相交)

    题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...

随机推荐

  1. 调用微信定位功能 lat _ lng php方法

    {:wx_jssdk_config("false")} //最主要的这一句 没有这一句在微信浏览器里是无法调用的定位功能的.下面有这个方法说明 <script> wx. ...

  2. Java编程基础篇第四章

    循环结构 循环结构的分类 for循环,while循环,do...while()循环 for循环 注意事项: a:判断条件语句无论简单还是复杂结果是boolean类型 b:循环体语句如果是一条语句,大括 ...

  3. 关于java中Pattern和Matcher区别于联系

    本文章转自: http://blog.csdn.net/cclovett/article/details/12448843 结论:Pattern与Matcher一起合作.Matcher类提供了对正则表 ...

  4. C# 让String.Contains忽略大小写

    在C#里,String.Contains是大小写敏感的,所以如果要在C#里用String.Contains来判断一个string里是否包含一个某个关键字keyword,需要把这个string和这个ke ...

  5. QSS独门秘籍:subcontrol

    QSS是C++ Qt中的界面美化神器,其语法和CSS区别不大,但是QSS有一个独有的功能——subcontrol,这是CSS所没有的,一个widget往往由多个子部件构成,利用subcontrol可以 ...

  6. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  7. MySQL5.7 虚拟列实现表达式或函数索引

    MySQL5.7 虚拟列实现表达式或函数索引 http://www.linuxidc.com/Linux/2015-11/125162.htm https://dev.mysql.com/doc/re ...

  8. java框架之SpringBoot(8)-嵌入式Servlet容器

    前言 SpringBoot 默认使用的嵌入式 Servlet 容器为 Tomcat,通过依赖关系就可以看到: 问题: 如何定制和修改 Servlet 容器相关配置? SpringBoot 能否支持其它 ...

  9. C工程 交互 ceph 分布式存储系统

    网上看到有人问,如何在C项目里调用ceph系统对外提供的API,实现分布式存储. 我在网上搜到了相关信息,但是因为不是会员无法追加答案,故而,贴于此. 赠予有缘人:) ———————————————— ...

  10. eclispe集成Scalas环境后,导入外部Spark包报错:object apache is not a member of package org

    在Eclipse中集成scala环境后,发现导入的Spark包报错,提示是:object apache is not a member of package org,网上说了一大推,其实问题很简单: ...