STL"源码"剖析-重点知识总结
STL是C++重要的组件之一,大学时看过《STL源码剖析》这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点略多 :)
1、STL概述
STL提供六大组件,彼此可以组合套用:
- 容器(Containers):各种数据结构,如:vector、list、deque、set、map。用来存放数据。从实现的角度来看,STL容器是一种class template。
- 算法(algorithms):各种常用算法,如:sort、search、copy、erase。从实现的角度来看,STL算法是一种 function template。
- 迭代器(iterators):容器与算法之间的胶合剂,是所谓的“泛型指针”。共有五种类型,以及其他衍生变化。从实现的角度来看,迭代器是一种将 operator*、operator->、operator++、operator- - 等指针相关操作进行重载的class template。所有STL容器都有自己专属的迭代器,只有容器本身才知道如何遍历自己的元素。原生指针(native pointer)也是一种迭代器。
- 仿函数(functors):行为类似函数,可作为算法的某种策略(policy)。从实现的角度来看,仿函数是一种重载了operator()的class或class template。一般的函数指针也可视为狭义的仿函数。
- 配接器(adapters):一种用来修饰容器、仿函数、迭代器接口的东西。例如:STL提供的queue 和 stack,虽然看似容器,但其实只能算是一种容器配接器,因为它们的底部完全借助deque,所有操作都由底层的deque供应。改变 functors接口者,称为function adapter;改变 container 接口者,称为container adapter;改变iterator接口者,称为iterator adapter。
- 配置器(allocators):负责空间配置与管理。从实现的角度来看,配置器是一个实现了动态空间配置、空间管理、空间释放的class template。
STL六大组件的交互关系
一些可能令人困惑的C++语法糖:
- 静态常量整数成员(double就不行)在class内部直接初始化
- 静态成员只能在类外初始化,且初始化时不加static
- 基类够构造函数中调用virtual函数实际调用的是基类中的virtual函数(这点和Java不同)
- 任何一个STL算法,都需要获得有一对迭代器(泛型指针)所指示的区间用以表示操作的范围。这一对迭代器表示的就是前闭后开区间
泛型指针、原生指针和智能指针
- 泛型指针有多种含义。指void*指针,可以指向任意数据类型,因此具有“泛型”含义。指具有指针特性的泛型数据结构,包含泛型的迭代器、智能指针等。广义的迭代器是一种不透明指针,能够实现遍历访问操作。通常所说的迭代器是指狭义的迭代器,即基于C++的STL中基于泛型的iterator_traits实现的类的实例。总体来说,泛型指针和迭代器是两个不同的概念,其中的交集则是通常提到的迭代器类。
- 原生指针就是普通指针,与它相对的是使用起来行为上像指针,但却不是指针。说“原生”是指“最简朴最基本的那一种”。因为现在很多东西都抽象化理论化了,所以“以前的那种最简朴最基本的指针”只是一个抽象概念(比如iterator)的表现形式之一。
- 智能指针是C++里面的概念:由于 C++ 语言没有自动内存回收机制,程序员每次得自己处理内存相关问题,但用智能指针便可以有效缓解这类问题。引入智能指针可以防止出现悬垂指针的情况,一般是把指针封装到一个称之为智能指针类中,这个类中另外还封装了一个使用计数器,对指针的复制等操作将导致该计数器的值加1,对指针的delete操作则会减1,值为0时,指针为NULL
2、迭代器
STL的中心思想是:将数据容器和算法分隔开,彼此独立设计,最后再用黏合剂将它们撮合在一起。容器和算法的泛型化,可以用C++的class template和function template来实现,而二者的黏合剂就是迭代器了。
迭代器是一种智能指针
与其说迭代器是一种指针,不如说迭代器是一种智能指针,它将指针进行了一层封装,既包含了原生指针的灵活和强大,也加上很多重要的特性,使其能发挥更大的作用以及能更好的使用。迭代器对指针的一些基本操作如*、->、++、==、!=、=进行了重载,使其具有了遍历复杂数据结构的能力,其遍历机制取决于所遍历的数据结构。下面上一段代码,了解一下迭代器的“智能”:
template<typename T> class Iterator { public: Iterator& operator++(); //... private: T *m_ptr; };
对于不同的数据容器,以上Iterator类中的成员函数operator++的实现会各不相同,例如,对于数组的可能实现如下:
//对于数组的实现 template<typename T> Iterator& operator++() { ++m_ptr; retrun *this; }
对于链表,它会有一个类似于next的成员函数用于获取下一个结点,其可能实现如下:
//对于链表的实现 template<typename T> Iterator& operator++() { m_ptr = m_ptr->next();//next()用于获取链表的下一个节点 return *this; }
iterator首先要对iterator指向对象的实现细节有非常丰富的了解,所以iterator为了不暴露所指向对象的信息,干脆就将iterator的实现由各个容器的设计者来实现好了。STL将迭代器的实现交给了容器,每种容器都会以嵌套的方式在内部定义专属的迭代器。各种迭代器的接口相同,内部实现却不相同,这也直接体现了泛型编程的概念。
迭代器使用示例
#include <iostream> #include <vector> #include <list> #include <algorithm> using namespace std; int main(int argc, const char *argv[]) { int arr[5] = { 1, 2, 3, 4, 5 }; vector<int> iVec(arr, arr + 5);//定义容器vector list <int> iList(arr, arr + 5);//定义容器list //在容器iVec的头部和尾部之间寻找整形数3 vector<int>::iterator iter1 = find(iVec.begin(), iVec.end(), 3); if (iter1 == iVec.end()) cout << "3 not found" << endl; else cout << "3 found" << endl; //在容器iList的头部和尾部之间寻找整形数4 list<int>::iterator iter2 = find(iList.begin(), iList.end(), 4); if (iter2 == iList.end()) cout << "4 not found" << endl; else cout << "4 found" << endl; system("pause"); return 0; }
从上面迭代器的使用中可以看到,迭代器依附于具体的容器,即不同的容器有不同的迭代器实现,同时,我们也看到,对于算法find来说,只要给它传入不同的迭代器,即可对不同的容器进行查找操作。通过迭代器的穿针引线,有效地实现了算法对不同容器的访问,这也是迭代器的设计目的。
3、序列式容器
所谓序列式容器,其中的元素都可序,但未必有序,C++本身内建了一个序列式容器array,STL另外提供了vector、list、deque、stack、queue、priority-queue等序列式容器。其中stack和queue由于只是deque改头换面而来,技术上被归为一种配接器 (adapter)。
vector
vector采用的数据结构非常简单:线性连续空间。它以两个迭代器start和finish分别指向配置得来的连续空间中目前已被使用的范围,并以迭代器end_of_storage指向整块连续空间(含备用空间)的尾端。
template <class T, class Alloc = alloc> class vector { ... protected: iterator start; //表示 iterator finish; iterator end_of_storage; ... };
注意:所谓动态增加大小,并不是在原来空间之后接续新空间(因为无法保证原空间之后尚有可供分配的空间),而是以原来大小的的两倍另外分配一块较大空间,然后将原内容拷贝过来,然后才开始在原内容之后构造新元素,并释放原空间。因此,对vector的任何操作,一旦引起空间重新配置,指向原vector的所有迭代器就都失效啦。
vector变量的大小分析
vector类中有3个迭代器域(也就是指针域),所以大小至少为12字节。
测试环境:win7 64位 VS2013
测试代码:
#include <iostream> #include <vector> using namespace std; int main(void) { vector<int> a(5, 0); //16 cout << sizeof(a) << endl; cout << (int)(void *)&a << endl; cout << (int)(void *)&a[0] << endl; cout << (int)(void *)&a[a.size() - 1] << endl; cout << endl; cout << *((int *)&a) << endl; cout << *(((int *)&a) + 1) << endl; cout << *(((int *)&a) + 2) << endl; cout << *(((int *)&a) + 3) << endl; cout << endl; cout << a.size() << endl; cout << a.capacity() << endl; system("pause"); return 0; }
测试结果显示此时vector的大小为16字节,分别包括start、finish、end_of_storage成员,剩下的4个字节暂时不知道代表什么意思… :(
测试环境:Ubuntu12.04 codeblocks10.05
测试代码:
#include <iostream> #include <vector> using namespace std; int main(void) { vector<int> a(5, 0); //12 cout << sizeof(a) << endl; cout << (int)(void *)&a << endl; cout << (int)(void *)&a[0] << endl; cout << (int)(void *)&a[a.size() - 1] << endl; cout << endl; cout << *((int *)&a) << endl; cout << *(((int *)&a) + 1) << endl; cout << *(((int *)&a) + 2) << endl; cout << *(((int *)&a) + 3) << endl; cout << endl; cout << a.size() << endl; cout << a.capacity() << endl; return 0; }
测试结果显示此时vector的大小为12字节,包括start、finish、end_of_storage成员
小结
win和Ubuntu所用的STL的版本是不一样的,不同的STL所使用的vector类也不同,有着不同的容器管理方式。
list
相对于vector的连续线性空间,list就显得复杂许多,它的好处就是插入或删除一个元素,就配置或删除一个元素空间。对于任何位置的元素的插入或删除,list永远是常数时间。
list本身和节点是不同的结构,需要分开设计。以下是STL list的节点node结构:
template <class T> class __list_node { typedef void* void_pointer; void_pointer prev; void_pointer next; T data; };
这是一个双向链表
list数据结构
SGI list不仅是一个双向链表,而且是一个环状双向链表。只需一个指针就可遍历整个链表。
deque
deque和vector的最大差异,一在于deque允许常数时间内对起头端进行插入或移除操作,二在于deque没有所谓容量(capacity)概念,因为它是以分段连续空间组合而成,随时可以增加一段新的空间连接起来。
deque由一段一段连续空间组成,一旦有必要在deque的前端或尾端增加新空间,便配置一段连续空间,串接在整个deque的前端或尾端。deque的最大任务,便是在这些分段的连续空间上,维护其整体连续的假象,并提供随机存取的接口,避开了“重新配置、复制、释放”的轮回,代价是复杂的迭代器结构。
deque迭代器
迭代器首先必须指出分段连续空间在哪里,其次它必须能够判断自己是否已经处在缓冲区的边缘,如果是,一旦前进或后退就必须跳跃下一个缓冲区,为了能够正常跳跃,deque必须随时掌握管控中心。
迭代器结构:
template <class T, class Ref, class Ptr, size_t BufSiz> struct __deque_iterator { // 未继承 std::iterator // 保持迭代器的连接 T* cur; // 此迭代器所指之缓冲区的现行( current)元素 T* first; // 此迭代器所指之缓冲区的的头 T* last; // 此迭代器所指之缓冲区的的尾(含备用空间) map_pointer node; // 指向管控中心 ... };
假如deque中已经包含了20个元素了,缓冲区大小为8,则内存布局如下:
注意:deque最初状态(无任何元素)保有一个缓冲区,因此,clear()完成之后回到初始状态,也一样会保留一个缓冲区。
stack
tack是一种先进后出(First In Last Out,FILO)的数据结构,它只有一个出口。stack允许增加元素、移除元素、取得最顶端元素。但除了最顶端外,没有任何其他方法可以存取,stack的其他元素,换言之,stack不允许有遍历行为。stack默认以deque为底层容器。
queue
queue是一种先进先出(First In First Out,FIFO)的数据结构,它有两个出口,允许增加元素、移除元素、从最底端加入元素、取得最顶端元素。但除了最底端可以加入、最顶端可以取出外,没有任何其他方法可以存取queue的其他元素,换言之,queue不允许有遍历行为。queue默认以deque为底层容器。
heap
heap并不归属于STL容器组件,它是个幕后英雄,扮演prority queue的助手。priority queue允许用户以任何次序将任何元素推入容器内,但取出时一定是按照优先级最高的元素开始取。binary max heap正好具有这样的特性,适合作为priority queue的底层机制。heap默认建立的是大堆。
heap测试用例:
#include <iostream> #include <queue> #include <algorithm> using namespace std; template <class T> struct display { void operator()(const T &x) { cout << x << " "; } }; /// heap默认为大堆,以下设置为建立小堆 template <typename T> struct greator { bool operator()(const T &x, const T &y) { return x > y; } }; int main(void) { int ia[9] = { 0, 1, 2, 3, 4, 8, 9, 3, 5 }; vector<int> ivec(ia, ia + 9); make_heap(ivec.begin(), ivec.end(), greator<int>()); //注意:此函数调用时,新元素应已止于底部容器的尾端 for_each(ivec.begin(), ivec.end(), display<int>()); cout << endl; ivec.push_back(7); push_heap(ivec.begin(), ivec.end(), greator<int>()); for_each(ivec.begin(), ivec.end(), display<int>()); cout << endl; pop_heap(ivec.begin(), ivec.end(), greator<int>()); cout << ivec.back() << endl; ivec.pop_back(); for_each(ivec.begin(), ivec.end(), display<int>()); cout << endl; sort_heap(ivec.begin(), ivec.end(), greator<int>()); for_each(ivec.begin(), ivec.end(), display<int>()); cout << endl; system("pause"); return 0; }
priority_queue
priority_queue是一个拥有权值的queue,它允许加入新元素、移除旧元素、审视元素值等功能。由于是一个queue,所以只允许在底端加入元素,从顶端取出元素,除此之外别无其他存取元素方法。priority_queue内的元素并非按照被推入的顺序排列,而是自动按照元素的权值排列。权值最高者排在前面。
默认情况下priority_queue利用max-heap按成,后者是一个以vector为底层容器的complate binary tree。
priority_queue测试用例:
#include <iostream> #include <queue> #include <algorithm> using namespace std; int main(void) { int ia[9] = { 0, 1, 2, 3, 4, 8, 9, 3, 5 }; vector<int> ivec(ia, ia + 9); priority_queue<int> ipq(ivec.begin(), ivec.end()); ipq.push(7); ipq.push(23); while (!ipq.empty()) { cout << ipq.top() << " "; ipq.pop(); } cout << endl; system("pause"); return 0; }
4、关联性容器
set和map底层数据结构都是红黑树,红黑树的data域段为pair<key, value>类型。关于红黑树更多知识请点击:深入理解红黑树。
set
set的所有元素都会根据元素的键值自动排序。set的元素不像map那样可以同时拥有实值(value)和键值(key),set元素的键值就是实值,实值就是键值,set不允许有两个相同的元素。Set元素不能改变,在set源码中,set<T>::iterator被定义为底层TB-tree的const_iterator,杜绝写入操作,也就是说,set iterator是一种constant iterators(相对于mutable iterators)
测试用例(让set从大到小存放元素):
#include <iostream> #include <set> #include <functional> using namespace std; /// set默认是从小到大排列,以下是让set从大到小排列 template <typename T> struct greator { bool operator()(const T &x, const T &y) { return x > y; } }; int main(void) { set<int, greator<int>> iset; iset.insert(12); iset.insert(1); iset.insert(24); for (set<int>::const_iterator iter = iset.begin(); iter != iset.end(); iter++) { cout << *iter << " "; } cout << endl; system("pause"); return 0; }
map
map的所有元素都会根据元素的键值自动排序。map的所有元素都是pair,同时拥有实值(value)和键值(key)。pair的第一元素为键值,第二元素为实值。map不允许有两个相同的键值。
如果通过map的迭代器改变元素的键值,这样是不行的,因为map元素的键值关系到map元素的排列规则。任意改变map元素键值都会破坏map组织。如果修改元素的实值,这是可以的,因为map元素的实值不影响map元素的排列规则。因此,map iterator既不是一种constant iterators,也不是一种mutable iterators。
测试用例(map从大到小存放元素):
#include <iostream> #include <string> #include <map> #include <functional> using namespace std; /// map默认是从小到大排列,以下是让map从大到小排列 template <typename T> struct greator { bool operator()(const T x, const T y) { return x > y; } }; int main(void) { map<int, string, greator<int>> imap; imap[3] = "333"; imap[1] = "333"; imap[2] = "333"; for (map<int, string>::const_iterator iter = imap.begin(); iter != imap.end(); iter++) { cout << iter->first << ": " << iter->second << endl; } system("pause"); return 0; }
multiset/multimap
multiset的特性以及用法和set完全相同,唯一的差别在于它允许键值重复,因此它的插入操作采用的是底层机制RB-tree的insert_equal()而非insert_unique()。
multimap的特性以及用法和map完全相同,唯一的差别在于它允许键值重复,因此它的插入操作采用的是底层机制RB-tree的insert_equal()而非insert_unique()。
hashtable (底层数据结构)
二叉搜索树具有对数平均时间表现,但这样的表现构造在一个假设上:输入数据有足够的随机性。hashtable这种结构在插入、删除、查找具有“常数平均时间”,而且这种表现是以统计为基础,不需依赖元素的随机性。
hashtable底层数据结构为分离连接法的hash表,如下所示:
hashtable中的buckets使用的是vector数据结构,当插入一个元素时,找到该插入哪个buckets的插槽,然后遍历该插槽指向的链表,如果有相同的元素,就返回;否则的话就将该元素插入到该链表的头部。(当然,如果是multi版本的话,是可以插入重复元素的,此时插入过程为:当插入一个元素时,找到该插入哪个buckets的插槽,然后遍历该插槽指向的链表,如果有相同的元素,就将新节点插入到该相同元素的后面;如果没有相同的元素,产生新节点,插入到链表头部)
当调用成员函数clear()后,buckets vector并未释放空间,仍保留原来大小,只是删除了buckets所连接的链表。
hash_multimap插入式的图示说明
hash_set
运用set,为的是快速搜寻元素。这一点,不论其底层是RB-tree或是hashtable,都可以完成任务,但是,RB-tree有自动排序功能而hashtable没有,即set的元素有自动排序功能而hash_set没有。
测试代码:
#include <iostream> #include <hash_set> #include <cstring> using namespace std; using namespace __gnu_cxx; // gcc编译器要加上这一句,否则编译出错 struct eqstr { bool operator()(const char *s1, const char *s2) { ; } }; void lookup(const hash_set<const char *> &Set, const char *word) { hash_set<const char *>::const_iterator iter = Set.find(word); cout << word << ": " << (iter != Set.end() ? "present" : "not present") << endl; } int main(void) { hash_set<const char *> Set; Set.insert("kiwi"); Set.insert("plum"); Set.insert("apple"); Set.insert("mango"); Set.insert("apricot"); Set.insert("banana"); lookup(Set, "mango"); lookup(Set, "apple"); lookup(Set, "durian"); hash_set<const char *>::const_iterator iter; for (iter = Set.begin(); iter != Set.end(); iter++) cout << *iter << " "; cout << endl; ; } hash_set测试代码
hash_map
hash_map以hashtable为底层结构,由于hash_map所提供的操作接口,hashtable都提供了,所以几乎所有的hash_map操作行为都是转调用hashtable的操作行为结果。RB-tree有自动排序功能而hashtable没有,反映出来的结果就是,map的元素有自动排序功能而hash_map没有。
测试代码:
#include <iostream> #include <hash_map> #include <cstring> #include <algorithm> using namespace std; template <typename T> struct print { void operator()(const T &x) { cout << x.first << ": " << x.second << endl; } }; int main(void) { hash_map<char *, int> days; days[; days[; days[; days[; days[; days[; cout << "march: " << days["march"] << endl; cout << "june: " << days["june"] << endl; cout << "the total elements of hash_map:" << endl; for_each(days.begin(), days.end(), print<pair<char *, int>>()); system("pause"); ; } hash_map测试代码
hash_multiset/hash_multimap
hash_multiset的特性与multiset完全相同,唯一的差别在于它的底层机制是hashtable,因此,hash_multiset的元素是不会自动排序的。
hash_multimap的特性与multimap完全相同,唯一的差别在于它的底层机制是hashtable,因此,hash_multimap的元素是不会自动排序的。
hash_multimap测试用例:
#include <iostream> #include <hash_map> #include <cstring> #include <algorithm> #include <string> using namespace std; template <typename T> struct print { void operator()(const T &x) { cout << x.first << ": " << x.second << endl; } }; int main(void) { hash_multimap<int, string> hmap; hmap.insert(pair<int, string>(2, "32")); hmap.insert(pair<int, string>(2, "22")); hmap.insert(pair<int, string>(2, "12")); hmap.insert(pair<int, string>(2, "2")); for_each(hmap.begin(), hmap.end(), print<pair<int, string>>()); return 0; }
在vs2013(windows 7 64位)下运行结果为:
在Kali2.0中运行(程序需添加using namespace __gun_cxx)结果为:
由运行结果可知,不同的系统所用的STL是有差别的,不同的STL的hash_table冲突解决方法不一样。
参考:http://www.cnblogs.com/luoxn28/p/5671988.html
STL"源码"剖析-重点知识总结的更多相关文章
- 【转载】STL"源码"剖析-重点知识总结
原文:STL"源码"剖析-重点知识总结 STL是C++重要的组件之一,大学时看过<STL源码剖析>这本书,这几天复习了一下,总结出以下LZ认为比较重要的知识点,内容有点 ...
- ArrayList源码深度剖析,从最基本的扩容原理,到魔幻的迭代器和fast-fail机制,你想要的这都有!!!
ArrayList源码深度剖析 本篇文章主要跟大家分析一下ArrayList的源代码.阅读本文你首先得对ArrayList有一些基本的了解,至少使用过它.如果你对ArrayList的一些基本使用还不太 ...
- HashMap源码深度剖析,手把手带你分析每一行代码,包会!!!
HashMap源码深度剖析,手把手带你分析每一行代码! 在前面的两篇文章哈希表的原理和200行代码带你写自己的HashMap(如果你阅读这篇文章感觉有点困难,可以先阅读这两篇文章)当中我们仔细谈到了哈 ...
- ArrayDeque(JDK双端队列)源码深度剖析
ArrayDeque(JDK双端队列)源码深度剖析 前言 在本篇文章当中主要跟大家介绍JDK给我们提供的一种用数组实现的双端队列,在之前的文章LinkedList源码剖析当中我们已经介绍了一种双端队列 ...
- FutureTask源码深度剖析
FutureTask源码深度剖析 前言 在前面的文章自己动手写FutureTask当中我们已经仔细分析了FutureTask给我们提供的功能,并且深入分析了我们该如何实现它的功能,并且给出了使用Ree ...
- JDK数组阻塞队列源码深入剖析
JDK数组阻塞队列源码深入剖析 前言 在前面一篇文章从零开始自己动手写阻塞队列当中我们仔细介绍了阻塞队列提供给我们的功能,以及他的实现原理,并且基于谈到的内容我们自己实现了一个低配版的数组阻塞队列.在 ...
- rxjava源码中的线程知识
rxjava源码中的线程知识 rx的最精简的总结就是:异步 这里说一下以下的五个类 1.Future2.ConcurrentLinkedQueue3.volatile关键字4.AtomicRefere ...
- libevent 源码深度剖析十三
libevent 源码深度剖析十三 —— libevent 信号处理注意点 前面讲到了 libevent 实现多线程的方法,然而在多线程的环境中注册信号事件,还是有一些情况需要小心处理,那就是不能在多 ...
- libevent源码深度剖析十二
libevent源码深度剖析十二 ——让libevent支持多线程 张亮 Libevent本身不是多线程安全的,在多核的时代,如何能充分利用CPU的能力呢,这一节来说说如何在多线程环境中使用libev ...
随机推荐
- opencv 金字塔图像分割
我所知的opencv中分割函数:watershed(只是看看效果,不能返回每类pixel类属),cvsegmentImage,cvPyrSegmentation(返回pixel类属) 金字塔分割原理篇 ...
- 【玩转Ubuntu】09. Ubuntu上安装apktool
下载两个文件 到这里 https://code.google.com/p/android-apktool/downloads/list?q=label:Featured下载这个文件 1. apkt ...
- YTU 2614: A代码完善--系统日期
2614: A代码完善--系统日期 时间限制: 1 Sec 内存限制: 128 MB 提交: 216 解决: 113 题目描述 注:本题只需要提交填写部分的代码,请按照C++方式提交. 已知某操作 ...
- jsp中@import导入外部样式表与link链入外部样式表的区别
昨天碰到同事问了一个问题,@impor导入外部样式与link链入外部样式的优先级是怎样的,为什么实验的结果是按照样式表导入后的位置来决定优先级.今天就这个问题具体总结如下: 先解释一下网页添加cs ...
- 【HDOJ】1362 The Bermuda Triangle
1. 题目描述给定几个三角形拼成一个百慕大三角形. 2. 基本思路基本思路肯定是搜索,关键点是剪枝.(1) 若存在长度为$l$的边,则一定可以拼成长度为$k \cdot l$的三角形,则可拼成长度为$ ...
- PHP无法加载MySQL模块
在 将PHP根目录下libmysql.dll复制到c:\Windows\system32中 在Apache目录中的conf\httpd.conf 中加载libmysql.dll ...
- web.xml中load-on-startup的作用(转)
web.xml中load-on-startup的作用 如下一段配置,熟悉DWR的再熟悉不过了:<servlet> <servlet-name>dwr-invoker< ...
- Java笔记之数组
1.int flags[] = new int[10];数组中的每个元素初始化为0. Arrays.fill(flags, 0);将数组中每个元素置为0.
- acdream 1682 吃不完的糖果(环形最大子段和)
Problem Description 娜娜好不容易才在你的帮助下"跳"过了这个湖,果然车到山前必有路,大战之后必有回复,大难不死,必有后福!现在在娜娜面前的就是好多好多的糖果还有 ...
- (六)6.4 Neurons Networks Autoencoders and Sparsity
BP算法是适合监督学习的,因为要计算损失函数,计算时y值又是必不可少的,现在假设有一系列的无标签train data: ,其中 ,autoencoders是一种无监督学习算法,它使用了本身作为标签以 ...