历届试题 矩阵翻硬币  
时间限制:1.0s   内存限制:256.0MB
问题描述
  小明先把硬币摆成了一个 n 行 m 列的矩阵。

  随后,小明对每一个硬币分别进行一次 Q 操作。

  对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转。

  其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。

  当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上。

  小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。

  聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。

输入格式
  输入数据包含一行,两个正整数 n m,含义见题目描述。
输出格式
  输出一个正整数,表示最开始有多少枚硬币是反面朝上的。
样例输入
2 3
样例输出
1
数据规模和约定
  对于10%的数据,n、m <= 10^3;
  对于20%的数据,n、m <= 10^7;
  对于40%的数据,n、m <= 10^15;
  对于10%的数据,n、m <= 10^1000(10的1000次方)。
 
题目解析:  

  1、从题目得知,如果一个硬币被翻转了奇数次后为正面朝上,那么它原始的状态一定是反面朝上。因此,我们需要统计所有翻转了奇数次硬币的个数。

  2、题目中的 “ 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转 ”。我们可以试着逆向思索,对于一个横坐标为X的硬币而言,我们翻转哪些硬币会影响到它而使它翻转呢?由此我们可以得出,当翻转的硬币的横坐标为X的约数时,会影响到它的翻转。比如,X=9,那么翻转横坐标为 1、3、9的时候会影响到它的翻转。纵坐标情况同理。

    对于一个硬币,我们必须考虑到它的横坐标和纵坐标。假如,此硬币的横坐标翻转了5次,纵坐标翻转了6次,那么它总的翻转次数为 5 * 6 = 30 次。因此我们得到一个公式:总翻转次数 (count) = 横坐标翻转次数 (count_x) * 纵坐标翻转次数 (count_y)。我们一开始就指出,我们需要找到翻转了奇数次的硬币,因此,横坐标翻转次数和纵坐标翻转次数均为奇数时,总翻转次数才为奇数次。

  3、接下来我们需要考虑,哪些数有奇数个约数呢?答案是完全平方数。它为 1,4,9,16,25,36...... 即n的2次方,n为从1开始的正整数。

    从题目中得知,此时是一个 n * m 的矩阵,行号和列号都是从1开始。因此我们需要解决 1 到 n 之间完全平方数个数的问题。方法是求出sqrt(n),然后对它取整,即 1 - n 之间总共有 (int)(sqrt(n)) 个完全平方数。因此,反面朝上硬币的个数为横纵坐标完全平方数个数相乘,即 (int)((sqrt(n)) * (sqrt(m))) 。

  4、由于此题的数据是超大规模的。因此,我们需要解决大数开方、大数相乘和大数比较等问题。

    通常使用 String 来接受键盘输入大数,因为它的长度比较容易控制。而使用 java.math.BigInteger 包中的 BigInteger 类来存储大数据。它的原则是,只要计算机有足够的的内存,它就能存储多长位数的数。

   大数开方: 牛顿逼近法。

        如果一个数的位数为偶数,那么这个数的方根就有 n/2 位,如果一个数的位数为奇数,这个数的方根就有 n/2 + 1 位。

        比如 num=1000 ,那么它的位数为 4 ,即方根就有 2 位。我们从方根的最高位进行枚举。

          先枚举出它的十位:

            10 * 10 = 100 < 1000

            20 * 20 = 400 < 1000

            30 * 30 = 900 < 1000

            40 * 40 = 1600 > 1000

          则这个根的十位为 3 。

          再枚举它的个位:

            31 * 31 = 961 < 1000

            32 * 32 = 1024 > 1000

          则这个根的个位为 1 。即这个方根为 31 。

   大数相乘:调用 java.math.* 包中的 multiply 方法。比如 bigNum1.multiply(bigNum2)

         在 c 语言或者 c++ 语言中没有 BigInteger 类,因此我们在考虑大数相乘的时候,需要解决移位和进位的问题。比如,在运算12 * 34 时,我们在演草纸上怎样进行计算的呢? 首先 2 * 4 = 8 没有进位,因此结果值的个位为 8 ,接下来 1 * 4 = 4 、 2 * 3 = 6 , 4 + 6 = 10 ,有进位,进 1 后结果值的十位为 0 ,然后 1 * 3 = 3 ,再加上刚才的进位 1 ,所以结果值的百位为 4 ,即最后的值为 408 。这是我们正常的计算方法,但我们需要考虑这种简单粗暴的方法怎样在计算机中实现。因此,我们这时想到将数放在数组中是一个很好的方法。比如,我们将 12 和 34 分别放在char型数组a和数组b中,结果放在数组 c 中。所以计算过程如下:

           a: { 1 , 2 }    b:{ 3 , 4}

           a[1] * b[1] = 2 * 4 = 8

           a[0] * b[1] = 1 * 4 = 4

           a[1] * b[0] = 2 * 3 = 6

           a[0] * b[0] = 1 * 3 = 3

           c:{ 3 , 10 , 8 }  →  { 4 , 0  , 8 }

        但是此时我们发现在数组中进行进位时是一件十分麻烦的事,因为若数非常大的时候,比如最后的结果出现了 { 9 , 12 , ... , 8},加入此数是一个 1000 0000 位的数,我们发现当最高位需要进位的时候,需要将这所有存储单位中的数右移一位,也就是需要移动 1000 0000 次,所以解决此问题的最好办法是将数在数组中逆序存储,当最高位需要进位的时候,只需要在最高位后再申请一个存储单元即可,也就是一定一次就可以了。比如计算 56 * 78 时,

           a: { 6, 5 }    b:{8 , 7}

           a[0] * b[0] = 6 * 8 = 48

           a[1] * b[0] = 5 * 8 = 40

           a[0] * b[1] = 6 * 7 = 42

           a[1] * b[1] = 5 * 7 = 35

           c:{ 48 , 82 , 35 }  →  { 8 , 86  , 35 }  →  { 8 , 6  , 43 }  →  { 8 , 6  , 3 , 4 }

        即 56 * 78 = 4368 。从移位和进位问题中我们就可以推敲出其规律来。所以,在解决大数相乘的时候,我们可以利用此方法来实现。

       

   大数比较: 调用 java.math.* 包中的 compareTo 方法,随第一个参数小于,等于或大于第二个参数返回负整数、零或正整数。比如 "2".compareTo ("3")

示例代码:

 import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.Arrays; public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] str = br.readLine().split(" ");
String n = str[0];
String m = str[1];
BigInteger answer = (bigSqrt(n)).multiply(bigSqrt(m)); //sqrt(n) * sqrt(m) 1-n之间的完全平方数的个数 * 1-m之间完全平方数的个数
System.out.println(answer);
}
// 求1 - num 之间完全平方数的个数
private static BigInteger bigSqrt(String num) {
int length = num.length(); //被开方数的位数
int sqrt_len = 0; //开方数的位数
if(length % 2 == 0){
sqrt_len = length / 2;
}else{
sqrt_len = length / 2 + 1;
}
BigInteger beSqrtNum = new BigInteger(num);
char[] ch = new char[sqrt_len]; //记录开方数,开房数在数组中逆序存放
Arrays.fill(ch, '0'); //将ch数组初始化为'0'
for(int i = 0; i < sqrt_len; i++){ //从开房数的最高位开始计算,使 每一位都转化为 开方数的平方且不大于被开方数
for(char j = '1'; j <= '9'; j++ ){
ch[i] = j;
String s = String.valueOf(ch);
BigInteger sqrtNum = new BigInteger(s);
BigInteger squareNum = sqrtNum.multiply(sqrtNum);
if(squareNum.compareTo(beSqrtNum) == 1){ //大数比较问题
ch[i] -= 1;
break;
}
}
}
return new BigInteger(String.valueOf(ch));
}
}

蓝桥杯 历届试题 PREV-34 矩阵翻硬币的更多相关文章

  1. 蓝桥杯历届试题 地宫取宝 dp or 记忆化搜索

    问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走 ...

  2. Java实现 蓝桥杯 历届试题 翻硬币

    问题描述 小明正在玩一个"翻硬币"的游戏. 桌上放着排成一排的若干硬币.我们用 * 表示正面,用 o 表示反面(是小写字母,不是零). 比如,可能情形是:**oo***oooo 如 ...

  3. 蓝桥杯 历届试题 剪格子(dfs搜索)

    历届试题 剪格子 时间限制:1.0s   内存限制:256.0MB 问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+ |* || +--****--+ ||* | ** ...

  4. 蓝桥杯  历届试题 幸运数  dfs

    历届试题 幸运数 时间限制:1.0s   内存限制:256.0MB 问题描述 幸运数是波兰数学家乌拉姆命名的.它采用与生成素数类似的"筛法"生成 . 首先从1开始写出自然数1,2, ...

  5. 蓝桥杯  历届试题 剪格子  dfs

    历届试题 剪格子 时间限制:1.0s   内存限制:256.0MB 问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+ |10* 1|52| +--****--+ |20 ...

  6. 蓝桥杯 历届试题 网络寻路(dfs搜索合法路径计数)

    X 国的一个网络使用若干条线路连接若干个节点.节点间的通信是双向的.某重要数据包,为了安全起见,必须恰好被转发两次到达目的地.该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径 ...

  7. 蓝桥杯 历届试题 约数倍数选卡片 (经典数论+DFS)

    闲暇时,福尔摩斯和华生玩一个游戏: 在N张卡片上写有N个整数.两人轮流拿走一张卡片.要求下一个人拿的数字一定是前一个人拿的数字的约数或倍数.例如,某次福尔摩斯拿走的卡片上写着数字“6”,则接下来华生可 ...

  8. 蓝桥杯 历届试题 九宫重排 (bfs+康托展开去重优化)

    Description 如下面第一个图的九宫格中,放着 1~8 的数字卡片,还有一个格子空着.与空格子相邻的格子中的卡片可以移动到空格中.经过若干次移动,可以形成第二个图所示的局面. 我们把第一个图的 ...

  9. 蓝桥杯历届试题 危险系数(dfs或者并查集求无向图关于两点的割点个数)

    Description 抗日战争时期,冀中平原的地道战曾发挥重要作用. 地道的多个站点间有通道连接,形成了庞大的网络.但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系. 我们来定义一个 ...

随机推荐

  1. 用nodejs实现读取文件操作

    //如果不是全局就得引入fs成员 const fs = require("fs"); //fs 核心模块中提供了一个 fs.readFile方法,来读取指定目录下的文件 //fs. ...

  2. Go sync模块

    // A WaitGroup waits for a collection of goroutines to finish.// The main goroutine calls Add to set ...

  3. Oracle常用知识小总结

    永不放弃,一切皆有可能!!! 只为成功找方法,不为失败找借口! Oracle常用知识小总结 1. 创建自增主键 对于习惯了SQL SERVER的图形化界面操作的SQLer,很长一段时间不用oracle ...

  4. 【bzoj2819】Nim(dfs序+树状数组/线段树)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2819 首先根据SG定理,可得若每堆石子数量的异或值为0,则后手必胜,反之先手必胜.于是 ...

  5. mongodb的使用(入门)

    1.登录mongodb ./bin/mongo 2.查看所有数据库 show dbs  ##默认有admin  和  local两个库 3.创建数据库 use test #创建数据库后,如果不写入数据 ...

  6. nodejs mysql 操作数据库方法一详解

    nodejs mysql 数据查询例子 时间 2014-11-11 15:28:01  姜糖水原文  http://www.cnphp6.com/archives/59864 1.安装nodejs 2 ...

  7. 内核编译错误解答(elf_i386错误)

    内核编译错误解答(elf_i386错误) 在编译内核过程中遇到的问题及解决方法: 1.root@org:/usr/src/linux# make menuconfig  *** Unable to f ...

  8. keystone uwsgi failed

    ~$ /usr/local/bin/uwsgi /etc/keystone/keystone-uwsgi-public.ini[uWSGI] getting INI configuration fro ...

  9. 深入理解Servlet3.0异步请求

    异步请求的基础概念 异步请求最直接的用法就是处理耗时业务,Http协议是单向的,只能客户端拉不能服务器主推. 异步请求的核心原理主要分为两大类:1.轮询.2长连接 轮询:就是定时获取返回结果. 长连接 ...

  10. 第一个Python程序hello.py提示出现File "<stdin>",line 1错误

    写第一个Python程序hello.py,内容仅有一句,print 'hello world', 运行 Python hello.py 出错,提示: File "<stdin>& ...