Java - "JUC线程池" ThreadPoolExecutor原理解析
ThreadPoolExecutor简介
ThreadPoolExecutor是线程池类。对于线程池,可以通俗的将它理解为"存放一定数量线程的一个线程集合。线程池允许若个线程同时允许,允许同时运行的线程数量就是线程池的容量;当添加的到线程池中的线程超过它的容量时,会有一部分线程阻塞等待。线程池会通过相应的调度策略和拒绝策略,对添加到线程池中的线程进行管理。"
ThreadPoolExecutor数据结构
ThreadPoolExecutor的数据结构如下图所示:
各个数据在ThreadPoolExecutor.java中的定义如下:
// 阻塞队列。
private final BlockingQueue<Runnable> workQueue;
// 互斥锁
private final ReentrantLock mainLock = new ReentrantLock();
// 线程集合。一个Worker对应一个线程。
private final HashSet<Worker> workers = new HashSet<Worker>();
// “终止条件”,与“mainLock”绑定。
private final Condition termination = mainLock.newCondition();
// 线程池中线程数量曾经达到过的最大值。
private int largestPoolSize;
// 已完成任务数量
private long completedTaskCount;
// ThreadFactory对象,用于创建线程。
private volatile ThreadFactory threadFactory;
// 拒绝策略的处理句柄。
private volatile RejectedExecutionHandler handler;
// 保持线程存活时间。
private volatile long keepAliveTime; private volatile boolean allowCoreThreadTimeOut;
// 核心池大小
private volatile int corePoolSize;
// 最大池大小
private volatile int maximumPoolSize;
1. workers
workers是HashSet<Work>类型,即它是一个Worker集合。而一个Worker对应一个线程,也就是说线程池通过workers包含了"一个线程集合"。当Worker对应的线程池启动时,它会执行线程池中的任务;当执行完一个任务后,它会从线程池的阻塞队列中取出一个阻塞的任务来继续运行。
wokers的作用是,线程池通过它实现了"允许多个线程同时运行"。
2. workQueue
workQueue是BlockingQueue类型,即它是一个阻塞队列。当线程池中的线程数超过它的容量的时候,线程会进入阻塞队列进行阻塞等待。
通过workQueue,线程池实现了阻塞功能。
3. mainLock
mainLock是互斥锁,通过mainLock实现了对线程池的互斥访问。
4. corePoolSize和maximumPoolSize
corePoolSize是"核心池大小",maximumPoolSize是"最大池大小"。它们的作用是调整"线程池中实际运行的线程的数量"。
例如,当新任务提交给线程池时(通过execute方法)。
-- 如果此时,线程池中运行的线程数量< corePoolSize,则创建新线程来处理请求。
-- 如果此时,线程池中运行的线程数量> corePoolSize,但是却< maximumPoolSize;则仅当阻塞队列满时才创建新线程。
如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。在大多数情况下,核心池大小和最大池大小的值是在创建线程池设置的;但是,也可以使用 setCorePoolSize(int) 和 setMaximumPoolSize(int) 进行动态更改。
5. poolSize
poolSize是当前线程池的实际大小,即线程池中任务的数量。
6. allowCoreThreadTimeOut和keepAliveTime
allowCoreThreadTimeOut表示是否允许"线程在空闲状态时,仍然能够存活";而keepAliveTime是当线程池处于空闲状态的时候,超过keepAliveTime时间之后,空闲的线程会被终止。
7. threadFactory
threadFactory是ThreadFactory对象。它是一个线程工厂类,"线程池通过ThreadFactory创建线程"。
8. handler
handler是RejectedExecutionHandler类型。它是"线程池拒绝策略"的句柄,也就是说"当某任务添加到线程池中,而线程池拒绝该任务时,线程池会通过handler进行相应的处理"。
综上所说,线程池通过workers来管理"线程集合",每个线程在启动后,会执行线程池中的任务;当一个任务执行完后,它会从线程池的阻塞队列中取出任务来继续运行。阻塞队列是管理线程池任务的队列,当添加到线程池中的任务超过线程池的容量时,该任务就会进入阻塞队列进行等待。
线程池调度
我们通过下面的图看看下面线程池中任务的调度策略,加深对线程池的理解。
图-01:
图-02:
说明:
在"图-01"中,线程池中有N个任务。"任务1", "任务2", "任务3"这3个任务在执行,而"任务3"到"任务N"在阻塞队列中等待。正在执行的任务,在workers集合中,workers集合包含3个Worker,每一个Worker对应一个Thread线程,Thread线程每次处理一个任务。
当workers集合中处理完某一个任务之后,会从阻塞队列中取出一个任务来继续执行,如图-02所示。图-02表示"任务1"处理完毕之后,线程池将"任务4"从阻塞队列中取出,放到workers中进行处理。
Java多线程系列--“JUC线程池”03之 线程池原理(二)
线程池示例
在分析线程池之前,先看一个简单的线程池示例。
1 import java.util.concurrent.Executors;
2 import java.util.concurrent.ExecutorService;
3
4 public class ThreadPoolDemo1 {
5
6 public static void main(String[] args) {
7 // 创建一个可重用固定线程数的线程池
8 ExecutorService pool = Executors.newFixedThreadPool(2);
9 // 创建实现了Runnable接口对象,Thread对象当然也实现了Runnable接口
10 Thread ta = new MyThread();
11 Thread tb = new MyThread();
12 Thread tc = new MyThread();
13 Thread td = new MyThread();
14 Thread te = new MyThread();
15 // 将线程放入池中进行执行
16 pool.execute(ta);
17 pool.execute(tb);
18 pool.execute(tc);
19 pool.execute(td);
20 pool.execute(te);
21 // 关闭线程池
22 pool.shutdown();
23 }
24 }
25
26 class MyThread extends Thread {
27
28 @Override
29 public void run() {
30 System.out.println(Thread.currentThread().getName()+ " is running.");
31 }
32 }
运行结果:
pool-1-thread-1 is running.
pool-1-thread-2 is running.
pool-1-thread-1 is running.
pool-1-thread-2 is running.
pool-1-thread-1 is running.
示例中,包括了线程池的创建,将任务添加到线程池中,关闭线程池这3个主要的步骤。稍后,我们会从这3个方面来分析ThreadPoolExecutor。
线程池源码分析
(一) 创建“线程池”
下面以newFixedThreadPool()介绍线程池的创建过程。
1. newFixedThreadPool()
newFixedThreadPool()在Executors.java中定义,源码如下:
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
说明:newFixedThreadPool(int nThreads)的作用是创建一个线程池,线程池的容量是nThreads。
newFixedThreadPool()在调用ThreadPoolExecutor()时,会传递一个LinkedBlockingQueue()对象,而LinkedBlockingQueue是单向链表实现的阻塞队列。在线程池中,就是通过该阻塞队列来实现"当线程池中任务数量超过允许的任务数量时,部分任务会阻塞等待"。
关于LinkedBlockingQueue的实现细节,读者可以参考"Java多线程系列--“JUC集合”08之 LinkedBlockingQueue"。
2. ThreadPoolExecutor()
ThreadPoolExecutor()在ThreadPoolExecutor.java中定义,源码如下:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
}
说明:该函数实际上是调用ThreadPoolExecutor的另外一个构造函数。该函数的源码如下:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
// 核心池大小
this.corePoolSize = corePoolSize;
// 最大池大小
this.maximumPoolSize = maximumPoolSize;
// 线程池的等待队列
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
// 线程工厂对象
this.threadFactory = threadFactory;
// 拒绝策略的句柄
this.handler = handler;
}
说明:在ThreadPoolExecutor()的构造函数中,进行的是初始化工作。
corePoolSize, maximumPoolSize, unit, keepAliveTime和workQueue这些变量的值是已知的,它们都是通过newFixedThreadPool()传递而来。下面看看threadFactory和handler对象。
2.1 ThreadFactory
线程池中的ThreadFactory是一个线程工厂,线程池创建线程都是通过线程工厂对象(threadFactory)来完成的。
上面所说的threadFactory对象,是通过 Executors.defaultThreadFactory()返回的。Executors.java中的defaultThreadFactory()源码如下:
public static ThreadFactory defaultThreadFactory() {
return new DefaultThreadFactory();
}
defaultThreadFactory()返回DefaultThreadFactory对象。Executors.java中的DefaultThreadFactory()源码如下:
static class DefaultThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix; DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
} // 提供创建线程的API。
public Thread newThread(Runnable r) {
// 线程对应的任务是Runnable对象r
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
0);
// 设为“非守护线程”
if (t.isDaemon())
t.setDaemon(false);
// 将优先级设为“Thread.NORM_PRIORITY”
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
}
说明:ThreadFactory的作用就是提供创建线程的功能的线程工厂。
它是通过newThread()提供创建线程功能的,下面简单说说newThread()。newThread()创建的线程对应的任务是Runnable对象,它创建的线程都是“非守护线程”而且“线程优先级都是Thread.NORM_PRIORITY”。
2.2 RejectedExecutionHandler
handler是ThreadPoolExecutor中拒绝策略的处理句柄。所谓拒绝策略,是指将任务添加到线程池中时,线程池拒绝该任务所采取的相应策略。
线程池默认会采用的是defaultHandler策略,即AbortPolicy策略。在AbortPolicy策略中,线程池拒绝任务时会抛出异常!
defaultHandler的定义如下:
private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
AbortPolicy的源码如下:
public static class AbortPolicy implements RejectedExecutionHandler {
public AbortPolicy() { } // 抛出异常
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
(二) 添加任务到“线程池”
1. execute()
execute()定义在ThreadPoolExecutor.java中,源码如下:
public void execute(Runnable command) {
// 如果任务为null,则抛出异常。
if (command == null)
throw new NullPointerException();
// 获取ctl对应的int值。该int值保存了"线程池中任务的数量"和"线程池状态"信息
int c = ctl.get();
// 当线程池中的任务数量 < "核心池大小"时,即线程池中少于corePoolSize个任务。
// 则通过addWorker(command, true)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 当线程池中的任务数量 >= "核心池大小"时,
// 而且,"线程池处于允许状态"时,则尝试将任务添加到阻塞队列中。
if (isRunning(c) && workQueue.offer(command)) {
// 再次确认“线程池状态”,若线程池异常终止了,则删除任务;然后通过reject()执行相应的拒绝策略的内容。
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
// 否则,如果"线程池中任务数量"为0,则通过addWorker(null, false)尝试新建一个线程,新建线程对应的任务为null。
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 通过addWorker(command, false)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
// 如果addWorker(command, false)执行失败,则通过reject()执行相应的拒绝策略的内容。
else if (!addWorker(command, false))
reject(command);
}
说明:execute()的作用是将任务添加到线程池中执行。它会分为3种情况进行处理:
情况1 -- 如果"线程池中任务数量" < "核心池大小"时,即线程池中少于corePoolSize个任务;此时就新建一个线程,并将该任务添加到线程中进行执行。
情况2 -- 如果"线程池中任务数量" >= "核心池大小",并且"线程池是允许状态";此时,则将任务添加到阻塞队列中阻塞等待。在该情况下,会再次确认"线程池的状态",如果"第2次读到的线程池状态"和"第1次读到的线程池状态"不同,则从阻塞队列中删除该任务。
情况3 -- 非以上两种情况。在这种情况下,尝试新建一个线程,并将该任务添加到线程中进行执行。如果执行失败,则通过reject()拒绝该任务。
2. addWorker()
addWorker()的源码如下:
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
// 更新"线程池状态和计数"标记,即更新ctl。
for (;;) {
// 获取ctl对应的int值。该int值保存了"线程池中任务的数量"和"线程池状态"信息
int c = ctl.get();
// 获取线程池状态。
int rs = runStateOf(c); // 有效性检查
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false; for (;;) {
// 获取线程池中任务的数量。
int wc = workerCountOf(c);
// 如果"线程池中任务的数量"超过限制,则返回false。
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 通过CAS函数将c的值+1。操作失败的话,则退出循环。
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 检查"线程池状态",如果与之前的状态不同,则从retry重新开始。
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
} boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
// 添加任务到线程池,并启动任务所在的线程。
try {
final ReentrantLock mainLock = this.mainLock;
// 新建Worker,并且指定firstTask为Worker的第一个任务。
w = new Worker(firstTask);
// 获取Worker对应的线程。
final Thread t = w.thread;
if (t != null) {
// 获取锁
mainLock.lock();
try {
int c = ctl.get();
int rs = runStateOf(c); // 再次确认"线程池状态"
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// 将Worker对象(w)添加到"线程池的Worker集合(workers)"中
workers.add(w);
// 更新largestPoolSize
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
// 释放锁
mainLock.unlock();
}
// 如果"成功将任务添加到线程池"中,则启动任务所在的线程。
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
// 返回任务是否启动。
return workerStarted;
}
说明:
addWorker(Runnable firstTask, boolean core) 的作用是将任务(firstTask)添加到线程池中,并启动该任务。
core为true的话,则以corePoolSize为界限,若"线程池中已有任务数量>=corePoolSize",则返回false;core为false的话,则以maximumPoolSize为界限,若"线程池中已有任务数量>=maximumPoolSize",则返回false。
addWorker()会先通过for循环不断尝试更新ctl状态,ctl记录了"线程池中任务数量和线程池状态"。
更新成功之后,再通过try模块来将任务添加到线程池中,并启动任务所在的线程。
从addWorker()中,我们能清晰的发现:线程池在添加任务时,会创建任务对应的Worker对象;而一个Workder对象包含一个Thread对象。(01) 通过将Worker对象添加到"线程的workers集合"中,从而实现将任务添加到线程池中。 (02) 通过启动Worker对应的Thread线程,则执行该任务。
3. submit()
补充说明一点,submit()实际上也是通过调用execute()实现的,源码如下:
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
(三) 关闭“线程池”
shutdown()的源码如下:
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
// 获取锁
mainLock.lock();
try {
// 检查终止线程池的“线程”是否有权限。
checkShutdownAccess();
// 设置线程池的状态为关闭状态。
advanceRunState(SHUTDOWN);
// 中断线程池中空闲的线程。
interruptIdleWorkers();
// 钩子函数,在ThreadPoolExecutor中没有任何动作。
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
// 释放锁
mainLock.unlock();
}
// 尝试终止线程池
tryTerminate();
}
说明:shutdown()的作用是关闭线程池。
Java - "JUC线程池" ThreadPoolExecutor原理解析的更多相关文章
- Java 线程池(ThreadPoolExecutor)原理解析
在我们的开发中“池”的概念并不罕见,有数据库连接池.线程池.对象池.常量池等等.下面我们主要针对线程池来一步一步揭开线程池的面纱. 有关java线程技术文章还可以推荐阅读:<关于java多线程w ...
- 硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理
前提 很早之前就打算看一次JUC线程池ThreadPoolExecutor的源码实现,由于近段时间比较忙,一直没有时间整理出源码分析的文章.之前在分析扩展线程池实现可回调的Future时候曾经提到并发 ...
- Java - "JUC线程池" 线程状态与拒绝策略源码分析
Java多线程系列--“JUC线程池”04之 线程池原理(三) 本章介绍线程池的生命周期.在"Java多线程系列--“基础篇”01之 基本概念"中,我们介绍过,线程有5种状态:新建 ...
- 线程池 ThreadPoolExecutor 原理及源码笔记
前言 前面在学习 JUC 源码时,很多代码举例中都使用了线程池 ThreadPoolExecutor,并且在工作中也经常用到线程池,所以现在就一步一步看看,线程池的源码,了解其背后的核心原理. 公众号 ...
- Java - "JUC线程池" 架构
Java多线程系列--“JUC线程池”01之 线程池架构 概要 前面分别介绍了"Java多线程基础"."JUC原子类"和"JUC锁".本章介 ...
- Java - "JUC线程池" Callable与Future
Java多线程系列--“JUC线程池”06之 Callable和Future Callable 和 Future 简介 Callable 和 Future 是比较有趣的一对组合.当我们需要获取线程的执 ...
- Java进阶——— 线程池的原理分析
前言 在了解线程池之前,其实首先出现的疑问是:为什么要使用线程池,其次是了解什么是线程池,最后是如何使用线程池,带着疑问去学习. 为什么要使用 前面多线程文章中,需要使用线程就开启一个新线程,简单方便 ...
- Java 线程池(ThreadPoolExecutor)原理分析与使用
在我们的开发中"池"的概念并不罕见,有数据库连接池.线程池.对象池.常量池等等.下面我们主要针对线程池来一步一步揭开线程池的面纱. 使用线程池的好处 1.降低资源消耗 可以重复利用 ...
- Java线程池ThreadPoolExecutor原理和用法
1.ThreadPoolExecutor构造方法 public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAli ...
随机推荐
- Effective C++笔记:继承与面向对象设计
关于OOP 博客地址:http://www.cnblogs.com/ronny 转载请注明出处! 1,继承可以是单一继承或多重继承,每一个继承连接可以是public.protected或private ...
- delphi datetimepicker 修改时间无效问题
今天用delphi写个程序,使用datetimepicker获得想要的时间.蛋疼的问题是无论怎么调整明明看着控件里面的日期变了,但是show出来的datetimepicker.datetime日期都不 ...
- 几种int类型的范围
我们在编程的过程经常会遇到数据溢出的情况,于是这个时候我们必须定义能表示更大的数的数据类型来表示这个数. 下面列出了int型的范围: unsigned int 0-4294967295 ...
- java接口应用—策略设计模式
策略模式:定义了一系列算法,将每一种算法封装起来并可以相互替换使用,策略模式让算法独立于使用它的客户应用而独立变化 strategy pattern:The Strategy Pattern defi ...
- 抓包和测试Api类工具
1.PostMan 测试api 2.Fiddler4抓包工具使用教程一
- 8皇后问题(c++/python实现)
问题描述:在8*8的国际象棋盘上摆放8个皇后,使其不能互相攻击,即任何两个皇后都不能处于同一行.同一列或者同一斜线上,问有多少种摆法. 算法分析: 利用3个数组分表来标记冲突,数组a.b.c. a数组 ...
- Git基本命令学习
Git是一个由林纳斯·托瓦兹为了更好地管理linux内核开发而创立的分布式版本控制/软件配置管理软件,如今已经超越CVS.SVN称为主流的版本控制器.许多著名的开源项目都用Git管理,比较火的托管服务 ...
- 打印页面时a标签不显示URL的方法
以前写博客啊,总想写一篇大作,然后希望能挂到博客园首页,隔一会儿看看阅读量有多少.其实哪有那么多大作,大部分时间都是解决了一个小问题,然后需要记录一下.比如下面这篇. 今天遇到一个需求是,打印网页时, ...
- StreamSets学习系列之启动StreamSets时出现Caused by: java.security.AccessControlException: access denied ("java.util.PropertyPermission" "test.to.ensure.security.is.configured.correctly" "read")错误的解决办法
不多说,直接上干货! 问题详情 [hadoop@master streamsets-datacollector-]$ ./bin/streamsets dc Java 1.8 detected; ad ...
- guava EventBus 消息总线的运用
public class Test { public static void main(String[] args) { final EventBus eventBus = new EventBus( ...