【BZOJ1502】[NOI2005]月下柠檬树

Description

李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理。李哲是一个喜爱思考的孩子,当他看到在月光的照射下柠檬树投在地面上的影子是如此的清晰,马上想到了一个问题:树影的面积是多大呢?李哲知道,直接测量面积是很难的,他想用几何的方法算,因为他对这棵柠檬树的形状了解得非常清楚,而且想好了简化的方法。李哲将整棵柠檬树分成了n 层,由下向上依次将层编号为1,2,…,n。从第1到n-1 层,每层都是一个圆台型,第n 层(最上面一层)是圆锥型。对于圆台型,其上下底面都是水平的圆。对于相邻的两个圆台,上层的下底面和下层的上底面重合。第n 层(最上面一层)圆锥的底面就是第n-1 层圆台的上底面。所有的底面的圆心(包括树顶)处在同一条与地面垂直的直线上。李哲知道每一层的高度为h1,h2,…,hn,第1 层圆台的下底面距地面的高度为h0,以及每层的下底面的圆的半径r1,r2,…,rn。李哲用熟知的方法测出了月亮的光线与地面的夹角为alpha。
 
为了便于计算,假设月亮的光线是平行光,且地面是水平的,在计算时忽略树干所产生的影子。李哲当然会算了,但是他希望你也来练练手

Input

第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度)。
第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的高度和每层的高度。
第3行包含n个实数r1,r2,…,rn,表示柠檬树每层下底面的圆的半径。
上述输入文件中的数据,同一行相邻的两个数之间用一个空格分隔。
输入的所有实数的小数点后可能包含1至10位有效数字。
1≤n≤500,0.3<alpha<π/2,0<hi≤100,0<ri≤100

Output

输出1个实数,表示树影的面积。四舍五入保留两位小数。

Sample Input

2 0.7853981633
10.0 10.00 10.00
4.00 5.00

Sample Output

171.97

题解:简洁题意就是让你求一堆圆和梯形的面积交。

Simpson积分:  

相当于用一个3次函数去拟合所求的图形,可以用于任意连续不规则图形,但是误差很大。自适应simpson积分呢,就是再对f(l,mid)和f(mid,r)分别算一下。如果f(l,mid)+f(mid,r)与f(l,r)误差很小,则直接返回f(l,r),否则继续递归计算。这样误差就比较小了(虽说也可以卡)。

剩下的问题就是如何求两圆的公切线。比较容易的方法是设两圆半径为R,r,先令R'=R-r,r'=0,这样就把第二个圆缩成了一个点,变成求点与圆的切线,再平移回去即可。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#define pi acos(-1.0)
using namespace std;
typedef double db;
const db eps=1e-6;
int n,m;
db alpha,h[510],O[510],R[510],ax[510],ay[510],bx[510],by[510];
inline db f(db x)
{
db ret=0;
int i;
for(i=1;i<=n;i++) if(x>=O[i]-R[i]&&x<=O[i]+R[i])
ret=max(ret,sqrt(R[i]*R[i]-(O[i]-x)*(O[i]-x)));
for(i=1;i<=m;i++) if(x>=ax[i]&&x<=bx[i])
ret=max(ret,ay[i]+(by[i]-ay[i])*(x-ax[i])/(bx[i]-ax[i]));
return ret;
}
inline db simpson(db a,db b)
{
return (b-a)/6*(f(a)+f(b)+f((a+b)/2)*4);
}
inline db calc(db l,db r,db val)
{
db mid=(l+r)/2,a=simpson(l,mid),b=simpson(mid,r);
if(fabs(a+b-val)<eps) return val;
return calc(l,mid,a)+calc(mid,r,b);
}
int main()
{
scanf("%d%lf",&n,&alpha);
int i;
db l=1e9,r=-1e9;
for(i=0;i<=n;i++)
{
scanf("%lf",&h[i]),h[i]/=tan(alpha);
if(i) h[i]+=h[i-1];
}
for(i=1;i<=n;i++)
{
scanf("%lf",&R[i]),O[i]=h[i-1],l=min(l,O[i]-R[i]),r=max(r,O[i]+R[i]);
if(i!=1&&O[i]-O[i-1]>fabs(R[i]-R[i-1]))
{
db a=(R[i-1]-R[i])/(O[i]-O[i-1]),b=sqrt(1-a*a);
ax[++m]=O[i-1]+a*R[i-1],ay[m]=b*R[i-1];
bx[m]=O[i]+a*R[i],by[m]=b*R[i];
}
}
if(h[n]>O[n]+R[n])
{
db a=R[n]/(h[n]-O[n]),b=sqrt(1-a*a);
r=h[n];
ax[++m]=O[n]+a*R[n],ay[m]=b*R[n];
bx[m]=h[n],by[m]=0;
}
printf("%.2lf",calc(l,r,simpson(l,r))*2);
return 0;
}//2 0.7853981633 10.0 10.00 10.00 4.00 5.00

【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分的更多相关文章

  1. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  2. [NOI2005]月下柠檬树(计算几何+积分)

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...

  3. 【BZOJ1502】【NOI2005】月下柠檬树 simpson 积分

    特别提醒:eps至少要5e-6 首先我们来研究下平行光对投影的影响. 一个二维的图形,若它与光屏平行,那么不论平行光与光屏的夹角为多少,所得图形与原图形全等的(只是位置会有影响) 通过这么一分析,我们 ...

  4. [日常摸鱼]bzoj1502[NOI2005]月下柠檬树-简单几何+Simpson法

    关于自适应Simpson法的介绍可以去看我的另一篇blog http://www.lydsy.com/JudgeOnline/problem.php?id=1502 题意:空间里圆心在同一直线上且底面 ...

  5. BZOJ 1502 月下柠檬树(simpson积分)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...

  6. BZOJ1502: [NOI2005]月下柠檬树

    Simpson法相当好用啊!神奇的骗分算法! /************************************************************** Problem: 1502 ...

  7. 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: 562[Submit][Status] ...

  8. [NOI2005]月下柠檬树[计算几何(simpson)]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1169  Solved: 626[Submit][Status] ...

  9. [NOI2005]月下柠檬树

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

随机推荐

  1. mysql数据库2

    命令行客户端软件MySQL Command Line Client, 打开该程序,输入数据库密码,登陆到MySQL软件, 如果想通过该命令行工具来操作MySQL软件,只需要在"mysql&g ...

  2. java 实现类似于python requests包的Session类,自动管理cookie。

    1.在py中requests.post()和get()函数都是在那个函数内部里面自动生成了一个Session类的实例,所以requests,post和get函数要想干登陆后才能干的事情,需要添加coo ...

  3. python -m 命令单独运行一个文件,怎么解决单独运行文件报错?

    依旧是续上篇解决为什么项目能运行,单独文件不能运行. 依旧是python3先发下目录结构,依旧是cmd运行,不要弄pycharm开始运行,否则有些错误就发现不了! 项目下面有pac1文件夹,pac1下 ...

  4. Objective-C 协议和运行时检查方法、类是否存在

    协议的声明: // // Person.h // TestOC01 // // Created by xinye on 13-10-23. // Copyright (c) 2013年 xinye. ...

  5. logback -- 配置详解 -- 三 -- <encoder>

    附: logback.xml实例 logback -- 配置详解 -- 一 -- <configuration>及子节点 logback -- 配置详解 -- 二 -- <appen ...

  6. c# new的三种用法

    在 C# 中,new 关键字可用作运算符.修饰符或约束. 1)new 运算符:用于创建对象和调用构造函数.这种大家都比较熟悉,没什么好说的了. 2)new 修饰符:在用作修饰符时,new 关键字可以显 ...

  7. 使用webbench做压力测试

    Memcached是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提供动态.数据库驱动网站的速度.下文介绍的是在Ubu ...

  8. trim思考

    今天发现后台订单商品名称没有的时候出现了HTML代码,然后看了一下源代码(下图是简化版本的) <?php $name = trim('<span style="font-weig ...

  9. Weblogic集群部署

    有些事情不去尝试,注定是失败,如果预知90%的失败仍然去尝试了,那也会从中学到很多,何况仅靠那10%的可能性也会成功 weblogic安装后 1.打开Configuration Wizard 2.创建 ...

  10. 绑定方式开始服务&调用服务的方法

    1.编写activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/androi ...