回归问题的典型性能度量是均方根误差(RMSE:Root Mean Square Error)。如下公式。

  1. m为是你计算RMSE的数据集中instance的数量。
  2. x(i)是第i个实例的特征值向量 ,y(i)是其label(期望的模型输出)。如下:
  3. X是包含了所有实例的特征值(不包含label)的矩阵。每行代表一个实例,并且每行等于x(i)向量的转置:(x(i))T 。 下图矩阵中的第一行为2中向量的转置(列向量变为行向量)。

  4. h是预测函数,当输入是某实例的特征向量x(i) 应用函数之后,结果为ŷ(i)=h(x(i)). ŷ也叫作y-hat. 比如:对第一个实例应用函数h后结果为158400,即ŷ(1)=h(x(1))=158400。那么预测误差/错误为ŷ(1)-y(1) = 158400 - 156400 = 2000.
  5. RMSE(X,h) 是在数据集X上应用于函数h计算的cost function。

以上,我们使用小写斜体表示标量(m,y(i)),函数名(h)。小写粗体表示向量(x(i)). 大写粗体表示矩阵(X).

还有一种度量方法为: Mean Absolute Error. 理解起来也比较简单。

下面是一张图,通过线性关系生动解释了RMSE。4个黑色的点是数据集(包括标签),蓝色的线是我们的预测函数h: ŷ=2.50x-2。从而可以求出RMSE为0.707.与之前不同的是这里取m为3(m-1)而不是4。

结论: RMSE越小,说明模型越fit数据。

性能度量RMSE的更多相关文章

  1. 机器学习性能度量指标:AUC

    在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     ...

  2. 机器学习实战笔记(Python实现)-07-模型评估与分类性能度量

    1.经验误差与过拟合 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m:相应的,1-a/m称为“精度”(acc ...

  3. [sklearn]性能度量之AUC值(from sklearn.metrics import roc_auc_curve)

    原创博文,转载请注明出处! 1.AUC AUC(Area Under ROC Curve),即ROC曲线下面积. 2.AUC意义 若学习器A的ROC曲线被学习器B的ROC曲线包围,则学习器B的性能优于 ...

  4. 机器学习性能度量指标:ROC曲线、查准率、查全率、F1

    错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...

  5. 吴裕雄 python 机器学习——模型选择回归问题性能度量

    from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...

  6. 吴裕雄 python 机器学习——模型选择分类问题性能度量

    import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets ...

  7. 【分类问题中模型的性能度量(二)】超强整理,超详细解析,一文彻底搞懂ROC、AUC

    文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 ...

  8. 【分类问题中模型的性能度量(一)】错误率、精度、查准率、查全率、F1详细讲解

    文章目录 1.错误率与精度 2.查准率.查全率与F1 2.1 查准率.查全率 2.2 P-R曲线(P.R到F1的思维过渡) 2.3 F1度量 2.4 扩展 性能度量是用来衡量模型泛化能力的评价标准,错 ...

  9. 性能度量之Confusion Matrix

    例子:一个Binary Classifier 假设我们要预测图片中的数字是否为数字5.如下面代码. X_train为训练集,每一个instance为一张28*28像素的图片,共784个features ...

随机推荐

  1. 闲话缓存:ZFS 读缓存深入研究-ARC(二)

    Solaris ZFS ARC的改动(相对于IBM ARC) 如我前面所说,ZFS实现的ARC和IBM提出的ARC淘汰算法并不是完全一致的.在某些方面,它做了一些扩展: ·         ZFS A ...

  2. statsvn,代码统计

    #! /bin/bash # 计算有效变更代码量的脚本 #./svnCount -thttps://192.168.1.1/xxx -s1000 -e2000 -uxxx -pxxx version( ...

  3. 有关dubbo面试的那些事儿

    dubbo是什么 dubbo是一个分布式框架,远程服务调用的分布式框架,其核心部分包含: 集群容错:提供基于接口方法的透明远程过程调用,包括多协议支持,以及软负载均衡,失败容错,地址路由,动态配置等集 ...

  4. Scala相关笔记

    一.Scala概述以及安装 1.   什么是Scala Scala 是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性.Scala 运行于 Java 平台(Java 虚拟机 ...

  5. centos7开机不进入图形界面

    centOS7开机不进入图形界面设置和centOS6系列不同的是,不再是直接改文件中的5就可以了. centOS7设置如下: systemctl get-default    //获取当前的默认tar ...

  6. shell习题第7题:备份数据库

    [题目要求] 设计一个shell脚本用来备份数据库,首先在本地服务器上保存一份数据,然后再远程拷贝一份,本地保存一周的数据,远程保存一个月 假设我们知道mysql root账号的密码,要备份的库为da ...

  7. MyEclipse部署项目时点finish点不动finish按钮灰色的

    在MyEclipse中项目的propertes中输入tomcat搜索,jdk选择你本机安装的jdk

  8. thinphp5-image图片处理类库压缩图片

    使用tp5的thinkphp-image类库处理图片 使用方法手册都有,为了增加印象我自己记录一下 手册:https://www.kancloud.cn/manual/thinkphp5/177530 ...

  9. JavaScript入门学习(1)

    <html> <script type ="text/javascript"> var i,j; for (i=1;i<10;i++){ for (j ...

  10. day 93 Django学习之django自带的contentType表

    Django学习之django自带的contentType表   通过django的contentType表来搞定一个表里面有多个外键的简单处理: 摘自:https://blog.csdn.net/a ...