【HDU 5934】Bomb(强连通缩点)
Problem Description
There are N bombs needing exploding.
Each bomb has three attributes: exploding radius ri, position (xi,yi) and lighting-cost ci which means you need to pay ci cost making it explode.
If a un-lighting bomb is in or on the border the exploding area of another exploding one, the un-lighting bomb also will explode.
Now you know the attributes of all bombs, please use the minimum cost to explode all bombs.
Input
First line contains an integer T, which indicates the number of test cases.
Every test case begins with an integers N, which indicates the numbers of bombs.
In the following N lines, the ith line contains four intergers xi, yi, ri and ci, indicating the coordinate of ith bomb is (xi,yi), exploding radius is ri and lighting-cost is ci.
Limits
- 1≤T≤20
- 1≤N≤1000
- −108≤xi,yi,ri≤108
- 1≤ci≤104
Output
For every test case, you should output 'Case #x: y', where x indicates the case number and counts from 1 and y is the minimum cost.
Sample Input
1
5
0 0 1 5
1 1 1 6
0 1 1 7
3 0 2 10
5 0 1 4
Sample Output
Case #1: 15
Source
2016年中国大学生程序设计竞赛(杭州)
题解
把一个炸弹可以炸到另一个看作一条有向边,然后再进行强连通缩点。对于新生成的图,我们只需引燃所有没有边指向的点,即可炸掉所有炸弹。
#include <map>
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 1005;
// N为最大点数
const int M = 1000005;
// M为最大边数
struct Edge{
int from, to, nex;
bool sign;//是否为桥
}edge[M<<1];
int head[N], edgenum;
void add(int u, int v){//边的起点和终点
Edge E={u, v, head[u], false};
edge[edgenum] = E;
head[u] = edgenum++;
}
int DFN[N], Low[N], Stack[N], top, Time; //Low[u]是点集{u点及以u点为根的子树} 中(所有反向弧)能指向的(离根最近的祖先v) 的DFN[v]值(即v点时间戳)
int taj;//连通分支标号,从1开始
int Belong[N];//Belong[i] 表示i点属于的连通分支
bool Instack[N];
vector<int> bcc[N]; //标号从1开始
void tarjan(int u ,int fa){
DFN[u] = Low[u] = ++ Time ;
Stack[top ++ ] = u ;
Instack[u] = 1 ;
for (int i = head[u] ; ~i ; i = edge[i].nex ){
int v = edge[i].to ;
if(DFN[v] == -1)
{
tarjan(v , u) ;
Low[u] = min(Low[u] ,Low[v]) ;
if(DFN[u] < Low[v])
{
edge[i].sign = 1;//为割桥
}
}
else if(Instack[v]) Low[u] = min(Low[u] ,DFN[v]) ;
}
if(Low[u] == DFN[u]){
int now;
taj ++ ; bcc[taj].clear();
do{
now = Stack[-- top] ;
Instack[now] = 0 ;
Belong [now] = taj ;
bcc[taj].push_back(now);
}while(now != u) ;
}
}
void tarjan_init(int all){
memset(DFN, -1, sizeof(DFN));
memset(Instack, 0, sizeof(Instack));
top = Time = taj = 0;
for(int i=1;i<=all;i++)if(DFN[i]==-1 )tarjan(i, i); //注意开始点标!!!
}
vector<int>G[N];
int du[N];
void suodian(){
memset(du, 0, sizeof(du));
for(int i = 1; i <= taj; i++)G[i].clear();
for(int i = 0; i < edgenum; i++){
int u = Belong[edge[i].from], v = Belong[edge[i].to];
if(u!=v)G[u].push_back(v), du[v]++;
}
}
int sz;
void init(){memset(head, -1, sizeof(head));sz=0; edgenum=0;}
int cost[N];
map<int,map<int,int> > vis;
int find(int x, int y, int c) {
if(!vis[x][y]){vis[x][y]=++sz;cost[sz]=c;}
return vis[x][y];
}
struct node
{
int x, y, r, c;
node(int tx, int ty, int tr, int tc)
{
x = tx;
y = ty;
r = tr;
c = tc;
}
node() {}
};
node a[N];
int ans[N];
bool isTouch(int i, int j)
{
long long dx = a[i].x - a[j].x;
long long dy = a[i].y - a[j].y;
long long dr = a[i].r;
return dx * dx + dy * dy <= dr * dr;
}
int main()
{
int T, ca = 1;
cin>>T;
int n, x, y, r, c;
while (T--)
{
cin>>n;
vis.clear();
init();
for (int i = 0; i < n; i++)
{
cin>>x>>y>>r>>c;
a[i] = node(x, y, r, c);
}
int id1, id2;
for (int i = 0; i < n; i++)
{
id1 = find(a[i].x, a[i].y, a[i].c);
for (int j = 0; j < n; j++)
{
if (i == j)
continue;
if (!isTouch(i, j))
continue;
id2 = find(a[j].x, a[j].y, a[j].c);
add(id1, id2);
}
}
tarjan_init(n);
suodian();
int cnt = 0;
for (int i = 1; i <= taj; i++)
{
if (du[i] == 0)
{
ans[cnt++] = i;
}
}
int sum = 0, tmp = 0;
for (int i = 0; i < cnt; i++)
{
for (int j = 0; j < bcc[ans[i]].size(); j++)
{
if (j == 0)
tmp = cost[bcc[ans[i]][j]];
else
tmp = min(tmp, cost[bcc[ans[i]][j]]);
}
sum += tmp;
}
cout<<"Case #" << (ca++) << ": " << sum<<endl;
}
return 0;
}
【HDU 5934】Bomb(强连通缩点)的更多相关文章
- HDU 5934 Bomb(炸弹)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
- HDU 5934 Bomb 【图论缩点】(2016年中国大学生程序设计竞赛(杭州))
Bomb Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- 【(最小权点基)tarjan强连通分量缩点+tarjan模板】HDU 5934 Bomb
[AC] #include<bits/stdc++.h> using namespace std; typedef long long ll; int n; ; ; const int i ...
- HDU 5934 Bomb(tarjan/SCC缩点)题解
思路:建一个有向图,指向能引爆对象,把强连通分量缩成一点,只要点燃图中入度为0的点即可.因为入度为0没人能引爆,不为0可以由别人引爆. 思路很简单,但是早上写的一直错,改了半天了,推倒重来才过了... ...
- hdu 5934 Bomb
Bomb Problem Description There are N bombs needing exploding.Each bomb has three attributes: explodi ...
- HDU 3639 Hawk-and-Chicken (强连通缩点+DFS)
<题目链接> 题目大意: 有一群孩子正在玩老鹰抓小鸡,由于想当老鹰的人不少,孩子们通过投票的方式产生,但是投票有这么一条规则:投票具有传递性,A支持B,B支持C,那么C获得2票(A.B共两 ...
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 3639 Hawk-and-Chicken(强连通分量+缩点)
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013480600/article/details/32140501 HDU 3639 Hawk-a ...
- hdu 2767 Proving Equivalences 强连通缩点
给出n个命题,m个推导,问最少添加多少条推导,能够使全部命题都能等价(两两都能互推) 既给出有向图,最少加多少边,使得原图变成强连通. 首先强连通缩点,对于新图,每一个点都至少要有一条出去的边和一条进 ...
随机推荐
- NowCoder数列
题目:https://www.nowcoder.com/questionTerminal/0984adf1f55a4ba18dade28f1ab15003 #include <iostream& ...
- Charles对移动APP抓包(https)
1.下载安装Charles 2.设置代理 (1)查看默认端口:Proxy->Proxy Settings 在这个页面会看到HTTP Proxy的默认端口是8888 (2)查看当前电脑的IP:H ...
- 491 Increasing Subsequences 递增子序列
给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2.示例:输入: [4, 6, 7, 7]输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, ...
- ubuntu server 14.04LTS升级Python3.5
依次执行如下命令:需要root权限,普通用户可以使用sudo 来执行以下命令 root@ubuntu-server:~# add-apt-repository ppa:fkrull/deadsnake ...
- Suricata的Reputation
见官网 https://suricata.readthedocs.io/en/latest/reputation/index.html Docs » 9. Reputation Edit on Git ...
- Sublime3注册码和安装中文包
1.Sublime3注册码 在工具栏Help中点击Enter license,粘贴下面一大串 —– BEGIN LICENSE —– Michael Barnes Single User Licens ...
- [转]Linq 如何实现 in 与 not in
本文转自:http://blog.csdn.net/zhangyumei/article/details/5620363 接触 LINQ 也有很长的一段时间了,有些在 SQL 语句中用的很顺手的东西在 ...
- 第一章、 CLR的执行模型
1. 概述 本章主要是介绍从源代码到可执行程序的过程中,CLR所做的工作. 2. 名词解释 ① 公共语言运行时(Common Language Runtime, CLR),是一个可由多种语言使用的 运 ...
- java只http改成https访问
目录 生成keystore文件 修改tomcat中的server.xml文件 配置浏览器 生成keystore文件: 1.在tomcat的bin 目录下输入命令:keytool -genkeypair ...
- [转]java注解与APT技术
下面是一个简单的自定义注解的栗子: package annotation; import java.lang.annotation.Documented; import java.lang.annot ...