%%yyb

%%zsy

就是实现一下Min-25筛 筛积性函数的操作

首先要得到

$G(M,j)=\sum_{t=j}^{cnt} \sum_{e=1}^{p_t^{e+1}<=M} [\phi(p_t^e)*G([M/(p_t^e)],t+1)+\phi(p_t^{(e+1)})]$
​ $+(F(M)-(F(p_{j-1})))$

先要预处理后面的部分,得到$F(M)$和$F(p_{j-1})$

$F(p_{j-1})$可以直接筛素数的时候前缀和计算一下

$F(M)$就要利用第一步的筛法了

发现,除了2之外的质数都是奇数,所以f(p^1)=p xor 1=p-1

对于2要特判

对于G,直接根据式子大力计算即可。

递归处理。由于值还是比较分散的,所以没有记忆化的必要。(而且状态很多,对空间极为不友好)

剪枝:pri[t]的平方大于n就不用继续算了。

代码:

#include<bits/stdc++.h>
#define il inline
#define reg register int
#define int long long
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=5e5+;
const int M=5e5+;
const int mod=1e9+;
int pri[M],tot;
int sum[M];//pre of prime
bool vis[N];
int sqr;
ll f[N],g[N],h[N];
void sieve(int n){
for(reg i=;i<=n;++i){
if(!vis[i]){
vis[i]=;
pri[++tot]=i;
}
for(reg j=;j<=tot;++j){
if(i*pri[j]>n) break;
vis[i*pri[j]]=;
if(i%pri[j]==) break;
}
}
for(reg i=;i<=tot;++i){
sum[i]=(sum[i-]+pri[i])%mod;
g[i]=(g[i-]+(pri[i]^))%mod;
}
}
int id1[N],id2[N]; ll val[N];
ll n;
int S(int x,int j){
if(x<=||x<pri[j]) return ;
cout<<" xx "<<x<<" jj "<<j<<endl;
int d=(x<=sqr)?id1[x]:id2[n/x];
int ret=(f[d]-g[j-]+mod)%mod;
for(reg t=j;t<=tot&&pri[t]*pri[t]<=x;++t){
int now=pri[t];
for(reg e=;now*pri[t]<=x;now=now*pri[t],++e){
ret=(ret+(pri[t]^e)*S(x/now,t+)%mod+(pri[t]^(e+))%mod)%mod;
}
}
return ret;
}
int main(){
scanf("%lld",&n);
if(n==){
puts("");return ;
}
sqr=sqrt(n);
// cout<<" sqr "<<sqr<<endl;
sieve(sqr);
// cout<<" after sieve "<<endl;
int m=;
for(ll i=,x;i<=n;i=x+){
x=n/(n/i);
val[++m]=n/i;
if(val[m]<=sqr) id1[val[m]]=m;
else id2[n/val[m]]=m;
}
for(reg i=;i<=m;++i){
f[i]=val[i]-;h[i]=(((ll)val[i]%mod*(val[i]%mod+))/-+mod)%mod;
}
for(reg j=;j<=tot;++j){
for(reg i=;i<=m&&(ll)pri[j]*pri[j]<=val[i];++i){
int to=(val[i]/pri[j])<=sqr?id1[val[i]/pri[j]]:id2[n/(val[i]/pri[j])];
f[i]=(f[i]-(f[to]-(j-))+mod+mod)%mod;
h[i]=(h[i]-pri[j]*(h[to]-sum[j-]+mod)%mod+mod)%mod;
}
}
for(reg i=;i<=m;++i){
if(val[i]>=) f[i]=(h[i]-f[i]++mod)%mod;
else f[i]=;
}
//cout<<" after prewrk "<<endl;
printf("%lld",(S(n,)+)%mod);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/1/13 17:03:03
*/

简单的函数——Min_25筛的更多相关文章

  1. LOJ.6053.简单的函数(Min_25筛)

    题目链接 Min_25筛见这里: https://www.cnblogs.com/cjyyb/p/9185093.html https://www.cnblogs.com/zhoushuyu/p/91 ...

  2. LOJ 6053 简单的函数——min_25筛

    题目:https://loj.ac/problem/6053 min_25筛:https://www.cnblogs.com/cjyyb/p/9185093.html 这里把计算 s( n , j ) ...

  3. loj 6053 简单的函数 —— min_25筛

    题目:https://loj.ac/problem/6053 参考博客:http://www.cnblogs.com/zhoushuyu/p/9187319.html 算 id 也可以不存下来,因为 ...

  4. LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】

    先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...

  5. LOJ6053 简单的函数(min_25筛)

    题目链接:LOJ 题目大意:从前有个积性函数 $f$ 满足 $f(1)=1,f(p^k)=p\oplus k$.(异或)求其前 $n$ 项的和对 $10^9+7$ 取模的值. $1\le n\le 1 ...

  6. [LOJ6053]简单的函数:Min_25筛

    分析 因为题目中所给函数\(f(x)\)的前缀和无法较快得出,考虑打表以下两个函数: \[ g(x)=x \times [x是质数] \] \[ h(x)=1 \times [x是质数] \] 这两个 ...

  7. min_25筛

    min_25筛 用来干啥? 考虑一个积性函数\(F(x)\),用来快速计算前缀和\[\sum_{i=1}^nF(i)\] 当然,这个积性函数要满足\(F(x),x\in Prime\)可以用多项式表示 ...

  8. Min_25 筛小结

    Min_25 筛这个东西,完全理解花了我很长的时间,所以写点东西来记录一些自己的理解. 它能做什么 对于某个数论函数 \(f\),如果满足以下几个条件,那么它就可以用 Min_25 筛来快速求出这个函 ...

  9. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

随机推荐

  1. vue的ui库使用Element UI,纯html页面,不使用webpack那玩意

    使用手册访问:https://cloud.tencent.com/developer/doc/1270 第一步:在head添加样式 <link rel="stylesheet" ...

  2. Hexo+gitment

    Gitment是一个基于GitHub问题的评论系统,可以在没有任何服务器端实现的前端使用. 演示页面 中文简介 特征 入门 方法 定制 关于安全 特征 GitHub登录 Markdown / GFM支 ...

  3. 【转】lvs、nginx、haproxy转发模式优缺点总结

    原文地址: https://yq.aliyun.com/ziliao/78374 一.LVS转发模式 LVS是章文嵩博士写的一个工作于四层的高可能性软件.不像后两者支持七层转发,不过也正因为其简单,所 ...

  4. vs2017搭建linux c++开发环境

    最近一直在阅读ovs的源码,看到用户态代码的时候,需要对用户态的代码进行调试,一开始想直接使用linux中的GDB进行调试,但是ovs的工程太过于复杂,从网上找了些文章,发现vs2017能够支持lin ...

  5. 市场营销的4c原则

    市场营销的4c原则随着市场竞争日趋激烈,媒介传播速度越来越快,4Ps理论越来越受到挑战.到80年代,美国劳特朋针对4P存在的问题提出了4Cs营销理论: 4C分别指代Customer(顾客).Cost( ...

  6. 5 种使用 Python 代码轻松实现数据可视化的方法

    数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...

  7. mysql数据库查询

    查询数据指从数据库中获取所需要的数据.查询数据是数据库操作中最常用,也是最重要的操作.用户可以根据自己对数据的需求,使用不同的查询方式.通过不同的查询方式,可以获得不同的数据.MySQL中是使用SEL ...

  8. Rsyslog-legacy(旧版本语法)配置说明及举例

    1. RULES-书写规则 格式:日志设备(类型).日志级别             日志处理方式 (1)日志类型分类 auth pam产生的日志 authpriv ssh,ftp等登录信息的验证信息 ...

  9. React-native APK打包

    安卓相关工具配置到环境变量,这样可以将安卓相关工具可以直接在cmd命令中调用 1 检查gradle版本 查看里面对应的编译工具版本号,如果提示版本不对你,那么直接去更新android sdk,相关的s ...

  10. WebService(二)

    使用eclipse开发webservice的服务器端以及客户端的简单实例 1.服务端 在eclipse中像建立一个web项目一样,new->Dynamic Web Project A.建一个需要 ...