参考:  https://www.cnblogs.com/tiansha/p/6458573.html

    https://blog.csdn.net/liangjiubujiu/article/details/81128013

一、编码流程

1、encmain.cpp:

  // 创建cTAppEncTop类,解析输入的配置函数,设定时间相关的参数
  int main(int argc, char* argv[])  
  {
    ...

    cTAppEncTop.encode();  // call encoding function

    ...

  }

2、TAppEncTop.cpp:

  /**
   - create internal class
   - initialize internal variable
   - until the end of input YUV file, call encoding function in TEncTop class
   - delete allocated buffers
   - destroy internal class
   .
   */

  // 对编码器所使用的几个对象进行初始化,分配YUV数据缓存,循环读取YUV文件

  Void TAppEncTop::encode()  

  {

    ...

    // call encoding function for one frame
       if ( m_isField )

      m_cTEncTop.encode( bEos, flush ? 0 : pcPicYuvOrg, flush ? 0 : &cPicYuvTrueOrg, snrCSC, m_cListPicYuvRec,

                outputAccessUnits, iNumEncoded, m_isTopFieldFirst );

   else

      m_cTEncTop.encode( bEos, flush ? 0 : pcPicYuvOrg, flush ? 0 : &cPicYuvTrueOrg, snrCSC, m_cListPicYuvRec,

                outputAccessUnits, iNumEncoded );

    ...

  }

3、TEncTop.cpp:

  // 调用m_cGOPEncoder.compressGOP()实现对GOP的实际编码

  Void TEncTop::encode(Bool flush, TComPicYuv* pcPicYuvOrg, TComPicYuv* pcPicYuvTrueOrg, const InputColourSpaceConversion snrCSC,

           TComList<TComPicYuv*>& rcListPicYuvRecOut, std::list<AccessUnit>& accessUnitsOut, Int& iNumEncoded, Bool isTff)
  {

    ...

    // compress GOP

    m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut, accessUnitsOut, true,

                   isTff, snrCSC, m_printFrameMSE);

    ...

  }

4、TEncGOP.cpp:

  // 设置GOP的参数;利用SPS和PPS中的信息创建编码的slice对象,对每一个slice进行编码

  Void TEncGOP::compressGOP( Int iPOCLast, Int iNumPicRcvd, TComList<TComPic*>& rcListPic,

TComList<TComPicYuv*>& rcListPicYuvRecOut, std::list<AccessUnit>& accessUnitsInGOP,
                           Bool isField, Bool isTff, const InputColourSpaceConversion snr_conversion, const Bool printFrameMSE )  
  {

    ...

    m_pcSliceEncoder->compressSlice   ( pcPic );  //对每一个slice,找出编码的最优参数

    ...

    m_pcSliceEncoder->encodeSlice(pcPic, pcSubstreamsOut);  //对每一个slice,对其进行实际的熵编码工作

    ...

  }

5、TEncSlice.cpp:

  /** \param rpcPic   picture class
   */

  // 设置编码slice的参数,对slice中的每一个CU进行处理
  Void TEncSlice::compressSlice( TComPic*& rpcPic )

  {

    ...

    // run CU encoder
       m_pcCuEncoder->compressCU( pcCU );  //对每一个CU,找出编码的最优参数

    ...

    m_pcCuEncoder->encodeCU( pcCU );  //对每一个CU,对其进行实际的熵编码工作

    ...

  }

6、TEncCu.cpp:

  /** \param  rpcCU pointer of CU data class  //指向CU的参数
   */
  Void TEncCu::compressCU( TComDataCU*& rpcCU )  //找到编码一个CU的最优参数
  {   

    // initialize CU data
    m_ppcBestCU[0]->initCU( rpcCU->getPic(), rpcCU->getAddr() );  //用来存储最好的QP和在每一个深度的预测模式决策。
    m_ppcTempCU[0]->initCU( rpcCU->getPic(), rpcCU->getAddr() );  //用来存储当前的QP和在每一个深度的预测模式决策。
    // analysis of CU
    DEBUG_STRING_NEW(sDebug)
    // 从深度0开始一直往上加,选择最好的预测模式和QP
    xCompressCU( m_ppcBestCU[0], m_ppcTempCU[0], 0 DEBUG_STRING_PASS_INTO(sDebug) );
    DEBUG_STRING_OUTPUT(std::cout, sDebug)
    #if ADAPTIVE_QP_SELECTION
    if( m_pcEncCfg->getUseAdaptQpSelect() )
    {
      if(rpcCU->getSlice()->getSliceType()!=I_SLICE)
      {
        xLcuCollectARLStats( rpcCU);
      }
    }
    #endif

  }

  /** Compress a CU block recursively with enabling sub-LCU-level delta QP
   *\param   rpcBestCU
   *\param   rpcTempCU
   *\param   uiDepth
   *\returns Void
   *
   *- for loop of QP value to compress the current CU with all possible QP
  */
  Void TEncCu::xCompressCU( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, UInt uiDepth DEBUG_STRING_FN_DECLARE(sDebug_), PartSize eParentPartSize )

  {    

    ...
    // get Original YUV data from picture
    m_ppcOrigYuv[uiDepth]->copyFromPicYuv( pcPic->getPicYuvOrg(), rpcBestCU->getAddr(), rpcBestCU->getZorderIdxInCU() );
    ...
    // compute BaseQP
    // 通过iBaseQP计算iMinQP和iMaxQP
    Int iBaseQP = xComputeQP( rpcBestCU, uiDepth );

    ...

    {

      // 尝试每一个可能的QP对应的每一种预测模式,得到QP和预测模式;实现对本层LCU的模式选择RDCost计算;

      // 执行顺序:帧间模式(Inter、SKIP、AMP)----- 帧内模式(Intra)----- PCM模式;

      // PCM以一种无损的方式进行编码,没有预测和残差,失真为0;如果最优模式产生的比特数大于PCM模式,则选择PCM模式;

      // xCheckRDCostInter():帧间模式;xCheckRDCostMerge2Nx2N():帧间Merge模式;

      // xCheckRDCostIntra():帧内模式;xCheckIntraPCM():PCM模式.

      // 代码框架:

      for (Int iQP=iMinQP; iQP<=iMaxQP; iQP++)
         {

        // try all kinds of prediction modes for every possible QP

        ...

      }

      ...

    }

    ...

    // 实现下层分割的计算,最后通过xCheckBestMode来比较是否选用分割

    for (Int iQP=iMinQP; iQP<=iMaxQP; iQP++)

    {

      const Bool bIsLosslessMode = false; // False at this level. Next level down may set it to true.

      rpcTempCU->initEstData( uiDepth, iQP, bIsLosslessMode );

      // further split

      if( bSubBranch && uiDepth < g_uiMaxCUDepth - g_uiAddCUDepth )

      {

        ...

        xCheckBestMode( rpcBestCU, rpcTempCU, uiDepth DEBUG_STRING_PASS_INTO(sDebug) DEBUG_STRING_PASS_INTO(sTempDebug) DEBUG_STRING_PASS_INTO(false) ); // RD compare current larger prediction

      }  

    }

    ...

  }

二、预测模式选择

1、帧间模式:

TypeDef.h:

/// supported partition shape
/// AMP (SIZE_2NxnU, SIZE_2NxnD, SIZE_nLx2N, SIZE_nRx2N)
enum PartSize
{
SIZE_2Nx2N = , ///< symmetric motion partition, 2Nx2N
SIZE_2NxN = 1, ///< symmetric motion partition, 2Nx N
SIZE_Nx2N = 2, ///< symmetric motion partition, Nx2N
SIZE_NxN = 3, ///< symmetric motion partition, Nx N
SIZE_2NxnU = 4, ///< asymmetric motion partition, 2Nx( N/2) + 2Nx(3N/2)
SIZE_2NxnD = 5, ///< asymmetric motion partition, 2Nx(3N/2) + 2Nx( N/2)
SIZE_nLx2N = 6, ///< asymmetric motion partition, ( N/2)x2N + (3N/2)x2N
SIZE_nRx2N = 7, ///< asymmetric motion partition, (3N/2)x2N + ( N/2)x2N
NUMBER_OF_PART_SIZES = 8
};
#if AMP_MRG
Void TEncCu::xCheckRDCostInter( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, PartSize ePartSize DEBUG_STRING_FN_DECLARE(sDebug), Bool bUseMRG)
#else
Void TEncCu::xCheckRDCostInter( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU, PartSize ePartSize )
#endif
{
DEBUG_STRING_NEW(sTest) UChar uhDepth = rpcTempCU->getDepth( ); rpcTempCU->setDepthSubParts( uhDepth, ); rpcTempCU->setSkipFlagSubParts( false, , uhDepth ); rpcTempCU->setPartSizeSubParts ( ePartSize, , uhDepth );
rpcTempCU->setPredModeSubParts ( MODE_INTER, , uhDepth );
rpcTempCU->setChromaQpAdjSubParts( rpcTempCU->getCUTransquantBypass() ? : m_ChromaQpAdjIdc, , uhDepth ); #if AMP_MRG
rpcTempCU->setMergeAMP (true);
m_pcPredSearch->predInterSearch ( rpcTempCU, m_ppcOrigYuv[uhDepth], m_ppcPredYuvTemp[uhDepth], m_ppcResiYuvTemp[uhDepth], m_ppcRecoYuvTemp[uhDepth] DEBUG_STRING_PASS_INTO(sTest), false, bUseMRG );
#else
m_pcPredSearch->predInterSearch ( rpcTempCU, m_ppcOrigYuv[uhDepth], m_ppcPredYuvTemp[uhDepth], m_ppcResiYuvTemp[uhDepth], m_ppcRecoYuvTemp[uhDepth] );
#endif #if AMP_MRG
if ( !rpcTempCU->getMergeAMP() )
{
return;
}
#endif m_pcPredSearch->encodeResAndCalcRdInterCU( rpcTempCU, m_ppcOrigYuv[uhDepth], m_ppcPredYuvTemp[uhDepth], m_ppcResiYuvTemp[uhDepth], m_ppcResiYuvBest[uhDepth], m_ppcRecoYuvTemp[uhDepth], false DEBUG_STRING_PASS_INTO(sTest) );
rpcTempCU->getTotalCost() = m_pcRdCost->calcRdCost( rpcTempCU->getTotalBits(), rpcTempCU->getTotalDistortion() ); #ifdef DEBUG_STRING
DebugInterPredResiReco(sTest, *(m_ppcPredYuvTemp[uhDepth]), *(m_ppcResiYuvBest[uhDepth]), *(m_ppcRecoYuvTemp[uhDepth]), DebugStringGetPredModeMask(rpcTempCU->getPredictionMode()));
#endif xCheckDQP( rpcTempCU );
xCheckBestMode(rpcBestCU, rpcTempCU, uhDepth DEBUG_STRING_PASS_INTO(sDebug) DEBUG_STRING_PASS_INTO(sTest));
}

2、帧间Merge模式:

/** check RD costs for a CU block encoded with merge
* \param rpcBestCU
* \param rpcTempCU
* \returns Void
*/
Void TEncCu::xCheckRDCostMerge2Nx2N( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU DEBUG_STRING_FN_DECLARE(sDebug), Bool *earlyDetectionSkipMode )
{
assert( rpcTempCU->getSlice()->getSliceType() != I_SLICE );
TComMvField cMvFieldNeighbours[ * MRG_MAX_NUM_CANDS]; // double length for mv of both lists
UChar uhInterDirNeighbours[MRG_MAX_NUM_CANDS];
Int numValidMergeCand = ;
const Bool bTransquantBypassFlag = rpcTempCU->getCUTransquantBypass(); for( UInt ui = ; ui < rpcTempCU->getSlice()->getMaxNumMergeCand(); ++ui )
{
uhInterDirNeighbours[ui] = ;
}
UChar uhDepth = rpcTempCU->getDepth( );
rpcTempCU->setPartSizeSubParts( SIZE_2Nx2N, , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->getInterMergeCandidates( , , cMvFieldNeighbours,uhInterDirNeighbours, numValidMergeCand ); Int mergeCandBuffer[MRG_MAX_NUM_CANDS];
for( UInt ui = ; ui < numValidMergeCand; ++ui )
{
mergeCandBuffer[ui] = ;
} Bool bestIsSkip = false; UInt iteration;
if ( rpcTempCU->isLosslessCoded())
{
iteration = ;
}
else
{
iteration = ;
}
DEBUG_STRING_NEW(bestStr) for( UInt uiNoResidual = ; uiNoResidual < iteration; ++uiNoResidual )
{
for( UInt uiMergeCand = ; uiMergeCand < numValidMergeCand; ++uiMergeCand )
{
if(!(uiNoResidual== && mergeCandBuffer[uiMergeCand]==))
{
if( !(bestIsSkip && uiNoResidual == ) )
{
DEBUG_STRING_NEW(tmpStr)
// set MC parameters
rpcTempCU->setPredModeSubParts( MODE_INTER, , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->setCUTransquantBypassSubParts( bTransquantBypassFlag, , uhDepth );
rpcTempCU->setChromaQpAdjSubParts( bTransquantBypassFlag ? : m_ChromaQpAdjIdc, , uhDepth );
rpcTempCU->setPartSizeSubParts( SIZE_2Nx2N, , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->setMergeFlagSubParts( true, , , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->setMergeIndexSubParts( uiMergeCand, , , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->setInterDirSubParts( uhInterDirNeighbours[uiMergeCand], , , uhDepth ); // interprets depth relative to LCU level
rpcTempCU->getCUMvField( REF_PIC_LIST_0 )->setAllMvField( cMvFieldNeighbours[ + *uiMergeCand], SIZE_2Nx2N, , ); // interprets depth relative to rpcTempCU level
rpcTempCU->getCUMvField( REF_PIC_LIST_1 )->setAllMvField( cMvFieldNeighbours[ + *uiMergeCand], SIZE_2Nx2N, , ); // interprets depth relative to rpcTempCU level // do MC
m_pcPredSearch->motionCompensation ( rpcTempCU, m_ppcPredYuvTemp[uhDepth] );
// estimate residual and encode everything
m_pcPredSearch->encodeResAndCalcRdInterCU( rpcTempCU,
m_ppcOrigYuv [uhDepth],
m_ppcPredYuvTemp[uhDepth],
m_ppcResiYuvTemp[uhDepth],
m_ppcResiYuvBest[uhDepth],
m_ppcRecoYuvTemp[uhDepth],
(uiNoResidual != ) DEBUG_STRING_PASS_INTO(tmpStr) ); #ifdef DEBUG_STRING
DebugInterPredResiReco(tmpStr, *(m_ppcPredYuvTemp[uhDepth]), *(m_ppcResiYuvBest[uhDepth]), *(m_ppcRecoYuvTemp[uhDepth]), DebugStringGetPredModeMask(rpcTempCU->getPredictionMode()));
#endif if ((uiNoResidual == ) && (rpcTempCU->getQtRootCbf() == ))
{
// If no residual when allowing for one, then set mark to not try case where residual is forced to 0
mergeCandBuffer[uiMergeCand] = ;
} rpcTempCU->setSkipFlagSubParts( rpcTempCU->getQtRootCbf() == , , uhDepth );
Int orgQP = rpcTempCU->getQP( );
xCheckDQP( rpcTempCU );
xCheckBestMode(rpcBestCU, rpcTempCU, uhDepth DEBUG_STRING_PASS_INTO(bestStr) DEBUG_STRING_PASS_INTO(tmpStr)); rpcTempCU->initEstData( uhDepth, orgQP, bTransquantBypassFlag ); if( m_pcEncCfg->getUseFastDecisionForMerge() && !bestIsSkip )
{
bestIsSkip = rpcBestCU->getQtRootCbf() == ;
}
}
}
} if(uiNoResidual == && m_pcEncCfg->getUseEarlySkipDetection())
{
if(rpcBestCU->getQtRootCbf( ) == )
{
if( rpcBestCU->getMergeFlag( ))
{
*earlyDetectionSkipMode = true;
}
else if(m_pcEncCfg->getFastSearch() != SELECTIVE)
{
Int absoulte_MV=;
for ( UInt uiRefListIdx = ; uiRefListIdx < ; uiRefListIdx++ )
{
if ( rpcBestCU->getSlice()->getNumRefIdx( RefPicList( uiRefListIdx ) ) > )
{
TComCUMvField* pcCUMvField = rpcBestCU->getCUMvField(RefPicList( uiRefListIdx ));
Int iHor = pcCUMvField->getMvd( ).getAbsHor();
Int iVer = pcCUMvField->getMvd( ).getAbsVer();
absoulte_MV+=iHor+iVer;
}
} if(absoulte_MV == )
{
*earlyDetectionSkipMode = true;
}
}
}
}
}
DEBUG_STRING_APPEND(sDebug, bestStr)
}

3、帧内模式:

Void TEncCu::xCheckRDCostIntra( TComDataCU *&rpcBestCU,
TComDataCU *&rpcTempCU,
Double &cost,
PartSize eSize
DEBUG_STRING_FN_DECLARE(sDebug) )
{
DEBUG_STRING_NEW(sTest) UInt uiDepth = rpcTempCU->getDepth( ); rpcTempCU->setSkipFlagSubParts( false, , uiDepth ); rpcTempCU->setPartSizeSubParts( eSize, , uiDepth );
rpcTempCU->setPredModeSubParts( MODE_INTRA, , uiDepth );
rpcTempCU->setChromaQpAdjSubParts( rpcTempCU->getCUTransquantBypass() ? : m_ChromaQpAdjIdc, , uiDepth ); Bool bSeparateLumaChroma = true; // choose estimation mode Distortion uiPreCalcDistC = ;
if (rpcBestCU->getPic()->getChromaFormat()==CHROMA_400)
{
bSeparateLumaChroma=true;
} Pel resiLuma[NUMBER_OF_STORED_RESIDUAL_TYPES][MAX_CU_SIZE * MAX_CU_SIZE]; if( !bSeparateLumaChroma )
{
// after this function, the direction will be PLANAR, DC, HOR or VER
// however, if Luma ends up being one of those, the chroma dir must be later changed to DM_CHROMA.
m_pcPredSearch->preestChromaPredMode( rpcTempCU, m_ppcOrigYuv[uiDepth], m_ppcPredYuvTemp[uiDepth] );
}
m_pcPredSearch->estIntraPredQT( rpcTempCU, m_ppcOrigYuv[uiDepth], m_ppcPredYuvTemp[uiDepth], m_ppcResiYuvTemp[uiDepth], m_ppcRecoYuvTemp[uiDepth], resiLuma, uiPreCalcDistC, bSeparateLumaChroma DEBUG_STRING_PASS_INTO(sTest) ); m_ppcRecoYuvTemp[uiDepth]->copyToPicComponent(COMPONENT_Y, rpcTempCU->getPic()->getPicYuvRec(), rpcTempCU->getAddr(), rpcTempCU->getZorderIdxInCU() ); if (rpcBestCU->getPic()->getChromaFormat()!=CHROMA_400)
{
m_pcPredSearch->estIntraPredChromaQT( rpcTempCU, m_ppcOrigYuv[uiDepth], m_ppcPredYuvTemp[uiDepth], m_ppcResiYuvTemp[uiDepth], m_ppcRecoYuvTemp[uiDepth], resiLuma, uiPreCalcDistC DEBUG_STRING_PASS_INTO(sTest) );
} m_pcEntropyCoder->resetBits(); if ( rpcTempCU->getSlice()->getPPS()->getTransquantBypassEnableFlag())
{
m_pcEntropyCoder->encodeCUTransquantBypassFlag( rpcTempCU, , true );
} m_pcEntropyCoder->encodeSkipFlag ( rpcTempCU, , true );
m_pcEntropyCoder->encodePredMode( rpcTempCU, , true );
m_pcEntropyCoder->encodePartSize( rpcTempCU, , uiDepth, true );
m_pcEntropyCoder->encodePredInfo( rpcTempCU, );
m_pcEntropyCoder->encodeIPCMInfo(rpcTempCU, , true ); // Encode Coefficients
Bool bCodeDQP = getdQPFlag();
Bool codeChromaQpAdjFlag = getCodeChromaQpAdjFlag();
m_pcEntropyCoder->encodeCoeff( rpcTempCU, , uiDepth, bCodeDQP, codeChromaQpAdjFlag );
setCodeChromaQpAdjFlag( codeChromaQpAdjFlag );
setdQPFlag( bCodeDQP ); m_pcRDGoOnSbacCoder->store(m_pppcRDSbacCoder[uiDepth][CI_TEMP_BEST]); rpcTempCU->getTotalBits() = m_pcEntropyCoder->getNumberOfWrittenBits();
rpcTempCU->getTotalBins() = ((TEncBinCABAC *)((TEncSbac*)m_pcEntropyCoder->m_pcEntropyCoderIf)->getEncBinIf())->getBinsCoded();
rpcTempCU->getTotalCost() = m_pcRdCost->calcRdCost( rpcTempCU->getTotalBits(), rpcTempCU->getTotalDistortion() ); xCheckDQP( rpcTempCU ); cost = rpcTempCU->getTotalCost(); xCheckBestMode(rpcBestCU, rpcTempCU, uiDepth DEBUG_STRING_PASS_INTO(sDebug) DEBUG_STRING_PASS_INTO(sTest));
}

4、PCM模式:

/** Check R-D costs for a CU with PCM mode.
* \param rpcBestCU pointer to best mode CU data structure
* \param rpcTempCU pointer to testing mode CU data structure
* \returns Void
*
* \note Current PCM implementation encodes sample values in a lossless way. The distortion of PCM mode CUs are zero. PCM mode is selected if the best mode yields bits greater than that of PCM mode.
*/
Void TEncCu::xCheckIntraPCM( TComDataCU*& rpcBestCU, TComDataCU*& rpcTempCU )
{
UInt uiDepth = rpcTempCU->getDepth( ); rpcTempCU->setSkipFlagSubParts( false, , uiDepth ); rpcTempCU->setIPCMFlag(, true);
rpcTempCU->setIPCMFlagSubParts (true, , rpcTempCU->getDepth());
rpcTempCU->setPartSizeSubParts( SIZE_2Nx2N, , uiDepth );
rpcTempCU->setPredModeSubParts( MODE_INTRA, , uiDepth );
rpcTempCU->setTrIdxSubParts ( , , uiDepth );
rpcTempCU->setChromaQpAdjSubParts( rpcTempCU->getCUTransquantBypass() ? : m_ChromaQpAdjIdc, , uiDepth ); m_pcPredSearch->IPCMSearch( rpcTempCU, m_ppcOrigYuv[uiDepth], m_ppcPredYuvTemp[uiDepth], m_ppcResiYuvTemp[uiDepth], m_ppcRecoYuvTemp[uiDepth]); m_pcRDGoOnSbacCoder->load(m_pppcRDSbacCoder[uiDepth][CI_CURR_BEST]); m_pcEntropyCoder->resetBits(); if ( rpcTempCU->getSlice()->getPPS()->getTransquantBypassEnableFlag())
{
m_pcEntropyCoder->encodeCUTransquantBypassFlag( rpcTempCU, , true );
} m_pcEntropyCoder->encodeSkipFlag ( rpcTempCU, , true );
m_pcEntropyCoder->encodePredMode ( rpcTempCU, , true );
m_pcEntropyCoder->encodePartSize ( rpcTempCU, , uiDepth, true );
m_pcEntropyCoder->encodeIPCMInfo ( rpcTempCU, , true ); m_pcRDGoOnSbacCoder->store(m_pppcRDSbacCoder[uiDepth][CI_TEMP_BEST]); rpcTempCU->getTotalBits() = m_pcEntropyCoder->getNumberOfWrittenBits();
rpcTempCU->getTotalBins() = ((TEncBinCABAC *)((TEncSbac*)m_pcEntropyCoder->m_pcEntropyCoderIf)->getEncBinIf())->getBinsCoded();
rpcTempCU->getTotalCost() = m_pcRdCost->calcRdCost( rpcTempCU->getTotalBits(), rpcTempCU->getTotalDistortion() ); xCheckDQP( rpcTempCU );
DEBUG_STRING_NEW(a)
DEBUG_STRING_NEW(b)
xCheckBestMode(rpcBestCU, rpcTempCU, uiDepth DEBUG_STRING_PASS_INTO(a) DEBUG_STRING_PASS_INTO(b));
}

HM16.0 TAppEncoder的更多相关文章

  1. 使用HM16.0对视频编码

    1.编译HM16.0源码: 步骤参照:https://www.vcodex.com/hevc-and-vp9-codecs-try-them-yourself/(可设置pq等参数) [编译过程中遇到l ...

  2. HM16.0之帧间Merge模式——xCheckRDCostMerge2Nx2N

    参考:https://blog.csdn.net/nb_vol_1/article/details/51163625 1.源代码: /** check RD costs for a CU block ...

  3. HM16.0之帧间预测——xCheckRDCostInter()函数

    参考:https://blog.csdn.net/nb_vol_1/article/category/6179825/1? 1.源代码: #if AMP_MRG Void TEncCu::xCheck ...

  4. HM16.0之帧内模式——xCheckRDCostIntra()函数

    参考:https://blog.csdn.net/nb_vol_1/article/category/6179825/1? 1.源代码: Void TEncCu::xCheckRDCostIntra( ...

  5. HM16.0帧内预测重要函数笔记

    Void TEncSearch::estIntraPredQT   亮度块的帧内预测入口函数 Void TComPrediction::initAdiPatternChType 获取参考样本点并滤波 ...

  6. HM16.0之PCM模式——xCheckIntraPCM

    参考:https://blog.csdn.net/cxy19931018/article/details/79781042 1.源代码: /** Check R-D costs for a CU wi ...

  7. HEVC之路0:HM16.18的运行+码流分析

    1.HM下载 HM不能直接网页下载,因为它是采用svn来管理代码的,因此需要利用svn下载,这里采用TortoiseSVN(软件下载地址为https://tortoisesvn.net/)进行下载. ...

  8. ZAM 3D 制作简单的3D字幕 流程(二)

    原地址:http://www.cnblogs.com/yk250/p/5663907.html 文中表述仅为本人理解,若有偏差和错误请指正! 接着 ZAM 3D 制作简单的3D字幕 流程(一) .本篇 ...

  9. ZAM 3D 制作3D动画字幕 用于Xaml导出

    原地址-> http://www.cnblogs.com/yk250/p/5662788.html 介绍:对经常使用Blend做动画的人来说,ZAM 3D 也很好上手,专业制作3D素材的XAML ...

随机推荐

  1. 手牵手,从零学习Vue源码 系列二(变化侦测篇)

    系列文章: 手牵手,从零学习Vue源码 系列一(前言-目录篇) 手牵手,从零学习Vue源码 系列二(变化侦测篇) 陆续更新中... 预计八月中旬更新完毕. 1 概述 Vue最大的特点之一就是数据驱动视 ...

  2. Python打印到屏幕_读取键盘输入

    Python打印到屏幕_读取键盘输入: print( ): 打印输出括号中的值 print("hello") # hello strs = 'hello' print(" ...

  3. 11-19 hashlib模块

    Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 什么是摘要算法呢? 摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进 ...

  4. PHP xml_set_notation_decl_handler() 函数

    定义和用法 xml_set_notation_decl_handler() 函数规定当解析器在 XML 文档中找到符号声明时被调用的函数. 如果成功,该函数则返回 TRUE.如果失败,则返回 FALS ...

  5. 5.19 省选模拟赛 T1 小B的棋盘 双指针 性质

    LINK:小B的棋盘 考试的时候没有认真的思考 导致没做出来. 容易发现 当k>=n的时候存在无限解 其余都存在有限解 对于30分 容易想到暴力枚举 对称中心 然后 n^2判断. 对于前者 容易 ...

  6. 获取随机字符串(0~9,A~Z)

    /// <summary>        /// 生成随机数        /// </summary>        /// <param name="cod ...

  7. 解决 IntelliJ IDEA占用C盘过大空间问题

    原文地址:https://blog.csdn.net/weixin_44449518/article/details/103334235 问题描述: 在保证其他软件缓存不影响C盘可用空间的基础上,当我 ...

  8. Python预测2020高考分数和录取情况

    “迟到”了一个月的高考终于要来了. 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识. ...

  9. List集合遍历时修改元素出现并发修改异常总结

    什么是并发修改异常: 当我们在遍历实现了collection接口与iterator接口的集合时(List.Set.Map), 我们可以通过遍历索引也可以通过迭代器进行遍历.在我们使用迭代器进行遍历集合 ...

  10. WC2020 Cu 记

    由于今年的 WC 既不 W 也不 C,所以其实应该叫吸吸F线上推广 3M 原则记 Day1 上午听了一会儿课跑去写题了,写着写着就摸了起来. 下午也摸了 晚上员交发现有好多听过的和好多好多没听过的 怎 ...