[BZOJ2159]Crash的文明世界(斯特林数+树形DP)
题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$。
题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S(m,i)$
故$S(i)=\sum_{k=1}^{m}S(m,k)\times k!\times\sum_{j=1}^{n}C(dist(i,j),k)$
用$f[i][k]$表示$C(dist(i,j),k)$,通过$Pascal$公式:$C(n,m)=C(n,m-1)+C(n-1,m-1)$,用树形DP得到答案。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=,K=,mod=;
int n,m,l,u,v,now,cnt,A,B,Q,tmp,p[N],f[N][K],S[K][K],fac[K],ans[N];
int to[N<<],nxt[N<<],h[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void dfs(int x,int fa){
f[x][]=;
For(i,x) if ((k=to[i])!=fa){
dfs(k,x); f[x][]=(f[x][]+f[k][])%mod;
rep(j,,m) f[x][j]=(f[x][j]+f[k][j]+f[k][j-])%mod;
}
} void getans(int x,int fa){
rep(i,,m) ans[x]=(ans[x]+f[x][i]*fac[i]%mod*S[m][i])%mod;
For(i,x) if ((k=to[i])!=fa){
for (int j=m; j>=; j--)
f[k][j]=((f[x][j]-f[k][j-]+f[x][j-]-f[k][j-]-f[k][j-])%mod+mod)%mod;
f[k][]=((f[x][]-f[k][]+f[x][]-f[k][])%mod+mod)%mod; f[k][]=n;
getans(k,x);
}
} int main(){
scanf("%d%d",&n,&m);
rep(i,,n-) scanf("%d%d",&u,&v),add(u,v),add(v,u);
dfs(,);
fac[]=; rep(i,,m) fac[i]=fac[i-]*i%mod;
S[][]=;
rep(i,,m) rep(j,,i) S[i][j]=(S[i-][j-]+S[i-][j]*j)%mod;
getans(,);
rep(i,,n) printf("%d\n",ans[i]);
return ;
}
[BZOJ2159]Crash的文明世界(斯特林数+树形DP)的更多相关文章
- 【BZOJ2159】Crash的文明世界 斯特林数+树形dp
Description Crash 小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现 ...
- BZOJ.2159.Crash的文明世界(斯特林数 树形DP)
BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis( ...
- 洛谷P4827 [国家集训队] Crash 的文明世界 [斯特林数,组合数,DP]
传送门 思路 又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数: \[ ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i} \] 前 ...
- Luogu4827 Crash的文明世界 组合、树形DP
传送门 又是喜闻乐见的\(k\)次幂求和题目 那么\(S(x) = \sum\limits_{i=1}^n dist(i,x)^k = \sum\limits_{i=1}^n \sum\limits_ ...
- bzoj 2159 Crash 的文明世界 && hdu 4625 JZPTREE ——第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/d ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- bzoj 2159 Crash 的文明世界 & hdu 4625 JZPTREE —— 第二类斯特林数+树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i ...
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
- BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数
题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...
随机推荐
- 【51NOD】独木舟
[算法]贪心 [题解]比较经典,用l,r两个定位指针分别从左右向中间推进. #include<cstdio> #include<algorithm> #include<c ...
- Python 下调用C动态链接库 -- (转)
在linux开发的动态链接库需要被python调用,首先需要生成.so文件. 生成动态链接库的方法网上有很多,主要就是首先根据源文件编译生成.o,然后链接这些.o文件-shared生成.so.需要注意 ...
- hdu 1200 To and Fro(简单模拟或DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1200 To and Fro Time Limit: 2000/1000 MS (Java/Others ...
- eureka服务端
服务注册与发现——Eureka Eureka Server:服务的注册中心,负责维护注册的服务列表. Service Provider:服务提供方,作为一个Eureka Client,向Eureka ...
- 2017-2018-1 20179205《Linux内核原理与设计》第七周作业
<Linux内核原理与设计>第七周作业 视频学习及操作分析 创建一个新进程在内核中的执行过程 fork.vfork和clone三个系统调用都可以创建一个新进程,而且都是通过调用do_for ...
- postman测试express restful接口
安装express及postman var express = require('express') var app = express(); var calculation = require('. ...
- Override 和 Overload 的含义和区别
Override 1.方法重写.覆盖: 2.重写是父类与子类之间多态性的一种表现: 3.方法名,参数,返回值相同: 4.存在于子类和父类之间: 5.修饰为final的方法,不能被重写: Overloa ...
- exit() _exit() 函数区别
exit(): --stdlib.h (1) 所有使用atexit()注册的函数,将会被以注册相反的顺序调用: (2) 所有打开的输出流被刷新,并且关闭流: (3) 使用tmpfile()创建的文件将 ...
- 【LOJbeta round1】ZQC的手办
NOI2012-超级钢琴的升级版. 用线段树维护最小值及其出现位置,接下来就跟超级钢琴一个做法了. #include<bits/stdc++.h> #define N 500010 #de ...
- jquery - 实例1
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="text2.aspx.cs& ...