keras中使用预训练模型进行图片分类
keras中含有多个网络的预训练模型,可以很方便的拿来进行使用。
安装及使用主要参考官方教程:https://keras.io/zh/applications/ https://keras-cn.readthedocs.io/en/latest/other/application/
官网上给出了使用 ResNet50 进行 ImageNet 分类的样例
from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np model = ResNet50(weights='imagenet') img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) preds = model.predict(x)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
# Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265', u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)]
那么对于其他的网络,便可以参考此代码
首先vgg19
# coding: utf-8
from keras.applications.vgg19 import VGG19
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np
base_model = VGG19(weights='imagenet', include_top=True)
model = Model(inputs=base_model.input, outputs=base_model.get_layer('fc2').output)
img_path = '../mdataset/img_test/p2.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
fc2 = model.predict(x)
print(fc2.shape) #(1, 4096)
然后mobilenet
# coding: utf-8
from keras.applications.mobilenet import MobileNet
from keras.preprocessing import image
from keras.applications.mobilenet import preprocess_input,decode_predictions
from keras.models import Model
import numpy as np
import time model = MobileNet(weights='imagenet', include_top=True,classes=1000) start = time.time() img_path = '../mdataset/img_test/dog.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) preds = model.predict(x)
# decode the results into a list of tuples (class, description, probability)
# (one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=15)[0])
end = time.time() print('time:\n')
print str(end-start)
时间统计时伪统计加载模型的时间,大概需要不到1秒,如果把加载模型的时间算进去,大概3s左右
keras中使用预训练模型进行图片分类的更多相关文章
- keras中VGG19预训练模型的使用
keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16.Xception.ResNet50.InceptionV3 4个. VGG19在keras中的定义: ...
- Pytorch——BERT 预训练模型及文本分类
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文 ...
- C#中的深度学习(五):在ML.NET中使用预训练模型进行硬币识别
在本系列的最后,我们将介绍另一种方法,即利用一个预先训练好的CNN来解决我们一直在研究的硬币识别问题. 在这里,我们看一下转移学习,调整预定义的CNN,并使用Model Builder训练我们的硬币识 ...
- 在ubuntu中配置深度学习python图片分类实验环境
1 安装numpy,scipy, matplotlib, sudo apt-get install python-numpy sudo apt-get install python-scipy sud ...
- 我的Keras使用总结(4)——Application中五款预训练模型学习及其应用
本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一 ...
- Keras下载的数据集以及预训练模型保存在哪里
Keras下载的数据集在以下目录中: root\\.keras\datasets Keras下载的预训练模型在以下目录中: root\\.keras\models 在win10系统来说,用户主目录是: ...
- Paddle预训练模型应用工具PaddleHub
Paddle预训练模型应用工具PaddleHub 本文主要介绍如何使用飞桨预训练模型管理工具PaddleHub,快速体验模型以及实现迁移学习.建议使用GPU环境运行相关程序,可以在启动环境时,如下图所 ...
- 自然语言处理(三) 预训练模型:XLNet 和他的先辈们
预训练模型 在CV中,预训练模型如ImagNet取得很大的成功,而在NLP中之前一直没有一个可以承担此角色的模型,目前,预训练模型如雨后春笋,是当今NLP领域最热的研究领域之一. 预训练模型属于迁移学 ...
- 5分钟Serverless实践:构建无服务器的图片分类系统
前言 在过去“5分钟Serverless实践”系列文章中,我们介绍了如何构建无服务器API和Web应用,从本质上来说,它们都属于基于APIG触发器对外提供一个无服务器API的场景.现在本文将介绍一种新 ...
随机推荐
- Eigen3
Eigen用源码的方式提供给用户使用,在使用时只需要包含Eigen的头文件即可进行使用. Eigen: C++开源矩阵计算工具——Eigen的简单用法 http://blog.csdn.net/aug ...
- PLSQL简介
目录 什么是PLSQL PLSQL起源 PLSQL早期版本 改善可移植性 改进执行权限于事务的完整性 原书:steven feuerstei-oracle PLSQL grogramming 2014 ...
- BZOJ 2140 Tarjan
思路: 跟POJ有一道时限挺长的题一模一样 哦 POJ 1904 题解可以看这个(捂脸) http://blog.csdn.net/qq_31785871/article/details/52963 ...
- C# 常用代码片段
一.从控制台读取东西代码片断: using System; class TestReadConsole { public static void Main() { Console.Write(Ente ...
- Java单例模式 多种实现方式
一:通过静态私有成员实现单例模式 (1):私有化构造函数 (2):new静态实例属性对象,加锁. 单例类: package SinglePag; /* * 构造函数私有化,结合锁+静态的概念 实现单例 ...
- SQLServer 事务的隔离级别
SQLServer事务的隔离级别 数据库是要被广大客户所共享访问的,那么在数据库操作过程中很可能出现以下几种不确定情况. 更新丢失(Lost update) 两个事务都同时更新一行数据,但是第二个事务 ...
- SqlServer动态变换库名
declare @tname varchar(20),@num intset @tname='Players_Log_L10001'declare @sql Nvarchar(1000)=N'sele ...
- (转)基于MVC4+EasyUI的Web开发框架形成之旅--权限控制
http://www.cnblogs.com/wuhuacong/p/3361351.html 我在上一篇随笔<基于MVC4+EasyUI的Web开发框架形成之旅--框架总体界面介绍>中大 ...
- 高手的C++学习忠告,虚心学习下~~[转载]
1.把C++当成一门新的语言学习(和C没啥关系!真的.): 2.看<Thinking In C++>,不要看<C++变成死相>: 3.看<The C++ Programm ...
- 主从同步工作过程?(binlog日志)
在从数据库服务器的/var/lib/mysql/master.info 记录连接主数据库服务器信息文件mail-relay-bin.XXXXXX 中继日志文件(记录SQL)mail-relay ...