每日五分钟搞定大数据】系列,HBase第一篇

结束了Zookeeper篇, 接下来我们来说下Google三驾马车之一BigTable的开源实现:HBase,要讲的内容暂定如下:

这是第一篇我们先不聊技术实现,只讨论特性和场景

hbase的特点

  • 千万级高并发
  • PB级存储
  • 非结构化存储
  • 动态列,稀疏列
  • 支持二级索引
  • 强一致性,可靠性,扩展性(CP系统,可用性做了一点让步)

场景

1. 写密集型应用,每天写入量巨大,而相对读数量较小的应用

2. 不需要复杂查询条件来查询数据的应用

使用rowkey,单条记录或者小范围的查询性能不错,大范围的查询由于分布式的原因,可能在性能上有点影响。

使用HBase的过滤器的话性能比较差。

3. 不需要关联的场景,HBase为NoSQL无法支持join

4. 可靠性要求高

master支持主备热切。

regionServer宕机,region会分配给在线的机器。

数据持久化在HDFS,默认3份,HDFS保证数据可靠性。

内存的数据若丢失可以通过Wal预写日志恢复。

5. 数据量较大,而且增长量无法预估的应用

HBase支持在线扩展,即使在一段时间内数据量呈井喷式增长,也可以通过HBase横向扩展来满足功能。

应用

  • 对象存储系统

HBase MOB(Medium Object Storage),中等对象存储是hbase-2.0.0版本引入的新特性,用于解决hbase存储中等文件(0.1m~10m)性能差的问题。这个特性适合将图片、文档、PDF、小视频存储到Hbase中。

  • OLAP的存储

Kylin的底层用的是HBase的存储,看中的是它的高并发和海量存储能力。kylin构建cube的过程会产生大量的预聚合中间数据,数据膨胀率高,对数据库的存储能力有很高要求。

Phoenix是构建在HBase上的一个SQL引擎,通过phoenix可以直接调用JDBC接口操作Hbase,虽然有upsert操作,但是更多的是用在OLAP场景,缺点是非常不灵活。

  • 时序型数据

openTsDB应用,记录以及展示指标在各个时间点的数值,一般用于监控的场景,是HBase上层的一个应用。

  • 用户画像系统

动态列,稀疏列的特性。用于描述用户特征的维度数是不定的且可能会动态增长的(比如爱好,性别,住址等);不是每个特征维度都会有数据

  • 消息/订单系统

强一致性,良好的读性能,至于hbase如何保证强一致性的后面的文章会详细说明。

  • feed流系统存储

见下面的一波分析。

feed流系统

前几天据说支持八个一线明星并发出轨的微博挂了....蹭个热度,上面的系统我就不一一说了,大家应该知道微博是典型的feed流系统,那我们来详细说下feed流系统。

什么是feed流系统

feed流系统有三个概念,如图(来自云栖社区)

feed:

一个终端发布的一些内容

  • 可以是用户发布的动态消息
  • 可以是广告系统推荐的广告
  • 也可以是系统本身推荐的一些公告

比如你在微博发了条动态,那这条动态就是feed

feeds流;

feeds流就是系统实时推送的根据了一定规则排序的信息流

比如你刷了下微博,在你的首页出现了按时间排好序的一堆新消息,那这就是feed流

feeds订阅;

这个比较简单,就是你通过应用,微博,朋友圈这些,关注了某个人,那就是订阅了Ta的feeds

Feed流系统的存储

Feed流系统中需要存储的内容大致可以分为两部分,

  • 账号关系数据(比如关注列表)
  • Feed消息内容

其实有很多方案实现,但是这篇说的是HBase,那我们就说说如何用HBase实现。

关注列表

关注列表就不重点讨论了,数据特点是:列数量不定,量大,关系简单,有序,性能要求高,可靠性要求高。互相关注,单向关注这种场景用二级索引很好实现。

Feed消息

数据的特点:

1.读多写少,举个栗子,看我文章的人里面有多少人是暗中观察的,不评论不点赞自己也不发文章的,这样“暗中观察”的同学占总用户的比例是很大的。

2.数据模型简单,消息时间,消息体,发布人,订阅人,很少会有需要关联的场景

3.高并发,波峰波谷式访问,Feed流系统属于社交类系统,热点来得快去得也快。

4.持久化可靠性存储
每个人发布的内容都是需要永久存储且不能丢失的,存储量会随着时间的推移会越来越大。需要系统有很强的扩展性和可靠性。

5.消息排序,HBase的rowKey按字典序排序正好适用于这个场景。比如rowkey可以设计成这样

<userId><timestamp><feedId>

这样获取某个用户发布的消息时就可以指定时间范围来scan,性能不错的同时还能保证时间线正确。

总结

从上面feed数据的特性可以看出,HBase是适合做feed流系统的,实际生产中也确实有feed流应用是用HBase来做的存储,

我这里只是一个初步的讨论,实际上还是有很多细节要考虑的,光靠HBase来实现肯定是远远不够的,它也有很多不适用的地方,要靠开发者自己去判断,

没有最好的只有最合适的,希望对大家有帮助。

HBase篇(1)-特性与应用场景的更多相关文章

  1. 《HBase在滴滴出行的应用场景和最佳实践》

    HBase在滴滴出行的应用场景和最佳实践   背景 对接业务类型 HBase是建立在Hadoop生态之上的Database,源生对离线任务支持友好,又因为LSM树是一个优秀的高吞吐数据库结构,所以同时 ...

  2. 二、RabbitMQ 进阶特性及使用场景 [.NET]

    前言 经过上一篇的介绍,相信大家对RabbitMQ 的各种概念有了一定的了解,及如何使用RabbitMQ.Client 去发送和消费消息. 特性及使用场景 1. TTL 过期时间 TTL可以用来指定q ...

  3. 解剖SQLSERVER 第七篇 OrcaMDF 特性概述(译)

    解剖SQLSERVER 第七篇  OrcaMDF 特性概述(译) http://improve.dk/orcamdf-feature-recap/ 时间过得真快,这已经过了大概四个月了自从我最初介绍我 ...

  4. HBase指定大量列集合的场景下并发拉取数据时卡住的问题排查

    最近遇到一例,HBase 指定大量列集合的场景下,并发拉取数据,应用卡住不响应的情形.记录一下. 问题背景 退款导出中,为了获取商品规格编码,需要从 HBase 表 T 里拉取对应的数据. T 对商品 ...

  5. Redis高级特性及应用场景

    Redis高级特性及应用场景 redis中键的生存时间(expire) redis中可以使用expire命令设置一个键的生存时间,到时间后redis会自动删除它. 过期时间可以设置为秒或者毫秒精度. ...

  6. HBase篇(5)- BloomFilter

    [每日五分钟搞定大数据]系列,HBase第五篇.上一篇我们落下了Bloom Filter,这次我们来聊聊这个东西. Bloom Filter 是什么? 先简单的介绍下Bloom Filter(布隆过滤 ...

  7. HBase篇(3)-架构详解

    [每日五分钟搞定大数据]系列,HBase第三篇 聊完场景和数据模型我们来说下HBase的架构,在网上找了张比较清晰的图,我觉得这张图能说明很多问题,那这一篇我们就重点来解析下这张图 角色与职责 先介绍 ...

  8. HBase在滴滴出行的应用场景和最佳实践

    摘要: 主要介绍了HBase和Phoenix在滴滴内部的一些典型案例.文章已在CSDN极客头条和<程序员>杂志发表,应朋友邀请,分享到云栖社区,希望给大家带来启发和帮助. 背景 对接业务类 ...

  9. 一条数据的HBase之旅,简明HBase入门教程3:适用场景

    [摘要] 这篇文章继HBase数据模型之后,介绍HBase的适用场景,以及与一些关键场景有关的周边技术生态,最后给出了本文的示例数据 华为云上的NoSQL数据库服务CloudTable,基于Apach ...

随机推荐

  1. mac版本查看日志命令

    1. ls -l 列出所有文件目录,并可以查看文件目录的所有权限 2.cd  切换至某个目录 eg: cd /Applications 再继续  ls -l 列出所有文件目录 3.cd .. 返回到上 ...

  2. CsQuery中文编码乱码问题

    一.问题描述 InnerHTML 中文显示为Модель 二.解决方法 在初始化CQ对象前,先设置执行以下语句: CsQuery.Config.HtmlEncoder = CsQuery.HtmlEn ...

  3. 剑指Offer 答题截图

  4. 排序算法----快速排序java

    快速排序是对冒泡排序的一种改进,平均时间复杂度是O(nlogn) import java.util.Arrays; import java.util.Scanner; public class tes ...

  5. SQL SERVER 查看数据库安装时间

    --通过name为NT AUTHORITY\SYSTEM的登录账号的create_date,就知道SQL Server的安装日期了. SELECT * FROM SYS.SERVER_PRINCIPA ...

  6. 老K漫谈区块链的共识(3)——分布式系统和区块链共识

    1. 啥是分布式系统 当我们评价一个新的事物或者介绍一个新的技术的时候,我们不能架空历史和环境,新的事物不可能脱离历史和环境凭空诞生.任何新的事物和新的技术总是或多或少的,与旧的事件以及过去的技术有所 ...

  7. Hive中笔记 :三种去重方法,distinct,group by与ROW_Number()窗口函数

    一.distinct,group by与ROW_Number()窗口函数使用方法 1. Distinct用法:对select 后面所有字段去重,并不能只对一列去重. (1)当distinct应用到多个 ...

  8. Android 加了自定义Application后报错 Unable to instantiate activity ComponentInfo ClassNotFoundException

    在Android自定义一个类继承集成Application后,并在AndroidManifest.xml里面配置了application的name属性为该类名称后报错: Unable to insta ...

  9. 二、selenium 安装

    selenium的安装所需要的环境: 1.浏览器的安装Firefox 2.JDK的安装(Java开发基础类库)eclipse 一个开发源代码的工具 3.selenium sever 下载.网络状况监视 ...

  10. 创建两个SAP系统之间的RFC信任关系

    一种常见的场景是企业运行着多个SAP系统(ERP/SRM/CRM),用户希望在AA1系统中使用BB1系统的事务.如果直接使用RFC调用另一系统的事务的话,则会弹出登陆框,让用户再次输入帐号密码... ...