题目链接:

POJ:

id=3831" target="_blank">http://poj.org/problem?id=3831

HDU:http://acm.hdu.edu.cn/showproblem.php?pid=3264

Description

The city of M is a famous shopping city and its open-air shopping malls are extremely attractive. During the tourist seasons, thousands of people crowded into these shopping malls and enjoy the vary-different shopping. 



Unfortunately, the climate has changed little by little and now rainy days seriously affected the operation of open-air shopping malls -- it's obvious that nobody will have a good mood when shopping in the rain. In order to change this situation, the manager
of these open-air shopping malls would like to build a giant umbrella to solve this problem. 



These shopping malls can be considered as different circles. It is guaranteed that these circles will not intersect with each other and no circles will be contained in another one. The giant umbrella is also a circle. Due to some technical reasons, the center
of the umbrella must coincide with the center of a shopping mall. Furthermore, a fine survey shows that for any mall, covering half of its area is enough for people to seek shelter from the rain, so the task is to decide the minimum radius of the giant umbrella
so that for every shopping mall, the umbrella can cover at least half area of the mall.

Input

The input consists of multiple test cases. 



The first line of the input contains one integer T (1 <= T <= 10), which is the number of test cases. For each test case, there is one integer N (1 <= N <= 20) in the first line, representing the number of shopping malls. 



The following N lines each contain three integers X,Y,R, representing that the mall has a shape of a circle with radius R and its center is positioned at (X, Y). X and Y are in the range of [-10000,10000] and R is a positive integer less than 2000.

Output

For each test case, output one line contains a real number rounded to 4 decimal places, representing the minimum radius of the giant umbrella that meets the demands.

Sample Input

1
2
0 0 1
2 0 1

Sample Output

2.0822

Source

题意: 

给出一些圆,选择当中一个圆的圆心为圆心。然后画一个大圆。要求大圆最少覆盖每一个圆的一半面积。求最小面积。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm> using namespace std;
const double eps = 1e-8;
const double PI = acos(-1.0); int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0) return - 1;
else return 1;
}
struct Point
{
double x, y, r;
Point() {}
Point(double _x, double _y)
{
x = _x;
y = _y;
}
Point operator -( const Point &b) const
{
return Point(x - b. x, y - b. y);
}
//叉积
double operator ^ (const Point &b) const
{
return x*b. y - y*b. x;
}
//点积
double operator * (const Point &b) const
{
return x*b. x + y*b. y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
void transXY(double B)
{
double tx = x,ty = y;
x = tx* cos(B) - ty*sin(B);
y = tx* sin(B) + ty*cos(B);
}
};
Point p[47]; //*两点间距离
double dist( Point a, Point b)
{
return sqrt((a-b)*(a- b));
}
//两个圆的公共部分面积
double Area_of_overlap(Point c1, double r1, Point c2, double r2)
{
double d = dist(c1,c2);
if(r1 + r2 < d + eps) return 0;
if(d < fabs(r1 - r2) + eps)
{
double r = min(r1,r2);
return PI*r*r;
}
double x = (d*d + r1*r1 - r2*r2)/(2*d);
double t1 = acos(x / r1);
double t2 = acos((d - x)/r2);
return r1*r1*t1 + r2*r2*t2 - d*r1*sin(t1);
} int main()
{
double x1, y1, r1, x2, y2, r2;
int t;
int n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = 0; i < n; i++)
{
scanf("%lf %lf %lf",&p[i].x,&p[i].y,&p[i].r);
}
double ans = 999999;
double l, r, mid;
for(int i = 0; i < n; i++) //枚举圆心
{
l = 0;
r = 35000.0;//二分
while(r-l > eps)//能找到
{
mid = (l+r)/2.0;
int flag = 0;
for(int j = 0; j < n; j++) // 每一个点
{
if(Area_of_overlap(p[i],mid,p[j],p[j].r)<p[j].r*p[j].r*PI/2.0)
{
flag = 1;//太小
break;
}
}
if(flag)
l = mid;
else
r = mid;
}
if(l < ans)
ans = l;
}
printf("%.4lf\n",ans);
}
return 0;
}

POJ 3831 &amp; HDU 3264 Open-air shopping malls(几何)的更多相关文章

  1. HDU 3264/POJ 3831 Open-air shopping malls(计算几何+二分)(2009 Asia Ningbo Regional)

    Description The city of M is a famous shopping city and its open-air shopping malls are extremely at ...

  2. hdu 3264 09 宁波 现场 E - Open-air shopping malls 计算几何 二分 圆相交面积 难度:1

    Description The city of M is a famous shopping city and its open-air shopping malls are extremely at ...

  3. hdu 3264 Open-air shopping malls(圆相交面积+二分)

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  4. HDU 3264 区间内的最大最小之差

    题目链接:http://poj.org/problem?id=3264 题目大意:在给定一堆牛的数量以及其高度的时候,每次给定一段区间,求这个区间内最高的牛和最矮的牛的高度之差为多少. 可以直接利用R ...

  5. hdu 3264(枚举+二分+圆的公共面积)

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  6. hdu 3264 圆的交+二分

    Open-air shopping malls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  7. Open-air shopping malls(二分半径,两元交面积)

    http://acm.hdu.edu.cn/showproblem.php?pid=3264 Open-air shopping malls Time Limit: 2000/1000 MS (Jav ...

  8. UVALive - 6572 Shopping Malls floyd

    题目链接: http://acm.hust.edu.cn/vjudge/problem/48416 Shopping Malls Time Limit: 3000MS 问题描述 We want to ...

  9. HDU 3264 Open-air shopping malls (计算几何-圆相交面积)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3264 题意:给你n个圆,坐标和半径,然后要在这n个圆的圆心画一个大圆,大圆与这n个圆相交的面积必须大于等 ...

随机推荐

  1. VB2012读取xml

    上回谢了生成写xml的,现在把读取的补上 文件如下 <?xml version="1.0" encoding="UTF-8" standalone=&qu ...

  2. 【Chromium中文文档】沙箱FAQ

    沙箱FAQ 转载请注明出处:https://ahangchen.gitbooks.io/chromium_doc_zh/content/zh//General_Architecture/Sandbox ...

  3. AutoItLibrary库入门

    一.AutoItLibrary入门 1. 为什么要使用AutoItLibrary Selenium2library在我们实际测试web页面的时候基本上已经够用了,不过还是会有部分情况下会脱离Selen ...

  4. linux网卡掉包或挂掉解决办法

    最近自己公司网站老出现掉包问题之前以为是网络问题或机房问题,经过N久的排查发现是linux网卡掉包了,下面我来分享我的解决办法.   之前公司的系统由于网卡问题,经常出现掉包(掉包排除攻击的 因素)或 ...

  5. Linux突然断电后文件丢失的问题

      原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://yuyongid.blog.51cto.com/10626891/168504 ...

  6. eclipse 代码补全

    代码补全 window-> properties -> Java ->Editor ->content Assist -> Auto activation trigger ...

  7. C++关键字之static

    一.面向过程设计中的static 1.静态全局变量 在全局变量前,加上关键字static,该变量就被定义成为一个静态全局变量.我们先举一个静态全局变量的例子,如下: [cpp]   #include& ...

  8. poj3077---进位

    #include <stdio.h> #include <stdlib.h> #include<string.h> ]; ]; int main() { int n ...

  9. shell programs

    find * -not -path "docs/*" -regex ".*\.\(rb\)" -type f -print0 | xargs -0     gr ...

  10. Spring、Spring依赖注入与编码剖析Spring依赖注入的原理

    Spring依赖注入 新建PersonIDao 和PersonDao底实现Save方法: public interface PersonIDao { public void save(); } pub ...