谷歌Dremel即时数据分析解决方案
Hadoop技术已经无处不在。不管是好是坏,Hadoop已经成为大数据的代名词。短短几年间,Hadoop从一种边缘技术成为事实上的标准。看来,不仅现在Hadoop是企业大数据的标准,而且在未来,它的地位似乎一时难以动摇。
谷歌文件系统与MapReduce
我们先来探讨一下Hadoop的灵魂——MapReduce。面对数据的爆炸性增长,谷歌的工程师Jeff Dean和Sanjay Ghemawat架构并发布了两个开创性的系统:谷歌文件系统(GFS)和谷歌MapReduce(GMR)。前者是一个出色而实用的解决方案-使用常规的硬件扩展并管理数据,后者同样辉煌,造就了一个适用于大规模并行处理的计算框架。
谷歌MapReduce(GMR)为普通开发者/用户进行大数据处理提供了简易的方式,并使之快速、具备容错性。谷歌文件系统(GFS)和谷歌MapReduce(GMR)也为谷歌搜索引擎对网页进行抓取、分析提供了核心动力。
再回头看看开源世界中的Hadoop,Apache Hadoop的分布式文件系统(HDFS)和Hadoop MapReduce完全是谷歌文件系统(GFS)和谷歌MapReduce(GMR)的开源实现。Hadoop项目已经发展成为一个生态系统,并触及了大数据领域的方方面面。但从根本上,它的核心是MapReduce。
Hadoop是否可以赶超谷歌?
一个有趣的现象是,MapReduce在谷歌已不再显赫。当企业瞩目MapReduce的时候,谷歌好像早已进入到了下一个时代。事实上,我们谈论的这些技术早就不是新技术了,MapReduce也不例外。
我希望在后Hadoop时代下面这些技术能够更具竞争性。尽管许多Apache社区的项目和商业化Hadoop项目都非常活跃,并以来自HBase、Hive和下一代MapReduce(YARN)的技术不断完善着Hadoop体系,我依然认为,Hadoop核心(HDFS和Zookeeper)需要脱离MapReduce并以全新的架构增强自己的竞争力,真正与谷歌技术一较高下。
过滤不断增长的索引,分析不断变化的数据集。Hadoop的伟大之处在于,它一旦开始运行,就会飞速地分析你的数据。尽管如此,在每次分析数据之前,即添加、更改或删除数据之后,我们都必须将整个数据集进行流式处理。这意味着,随着数据集的膨胀,分析时间也会随之增加,且不可预期。
那么,谷歌又是怎么做到搜索结果越来越实时呈现呢?一个名为Percolator的增量处理引擎取代了谷歌MapReduce(GMR)。通过对新建、更改和已删除文档的处理,并使用二级索引进行高效的分类、查询,谷歌能够显著地降低实现其目标的时间。
Percolator的作者写道:“将索引系统转化为一个增量系统……文档平均处理延迟的因子降低到了现在的100。”这句话的意思是,索引Web上新内容的速度比之前MapReduce系统快了100倍。
谷歌Dremel即时数据分析解决方案
谷歌和Hadoop社区曾致力于构建基于MapReduce的易用性即时数据分析工具,如谷歌的并行处理语言Sawzall,Apache Pig和Hive。但对熟知SQL的人们而言,他们忽略了一个基本事实-构建MapReduce的目标就在于管理数据处理工作。它的核心能力在于工作流管理,而不是即时数据分析。
与之形成鲜明对比的是,很多BI或数据分析查询基本上都要求即时、交互和低延迟。这意味着,使用Hadoop不仅需要规划流程图,而且需要为许多查询分析裁减不必要的工作流。即便如此,我们也要花费数分钟等待工作开始,然后花费数小时等待工作流完成,并且这个过程也非常不利于交互式体验。因此,谷歌研发了Dremel予以应对。Dremel是Google 的“交互式”数据分析系统,可以在几秒钟内处理PB级别的数据,并能轻松应对即时查询。
Google Dremel的设计特点:
Dremel是一个可扩展的大型系统。在一个PB级别的数据集上面,将任务缩短到秒级,无疑需要大量的并发。磁盘的顺序读速度在100MB/S上下,那么在1S内处理1TB数据,意味着至少需要有1万个磁盘的并发读! Google一向是用廉价机器办大事的好手。但是机器越多,出问题概率越大,如此大的集群规模,需要有足够的容错考虑,保证整个分析的速度不被集群中的个别节点影响。
Dremel是MapReduce的补充。和MapReduce一样,Dremel也需要GFS这样的文件系统作为存储层。在设计之初,Dremel并非是MapReduce的替代品,它只是可以执行非常快的分析,在使用的时候,常常用它来处理MapReduce的结果集或者用来建立分析原型。
Dremel的数据模型是嵌套的。互联网数据常常是非关系型的。Dremel还需要有一个灵活的数据模型,这个数据模型至关重要。Dremel支持一个嵌套的数据模型,类似于JSON。而传统的关系模型,由于不可避免的有大量的JOIN操作,在处理如此大规模的数据的时候,往往是有心无力的。
Dremel中的数据是采用列式存储的。使用列式存储,分析的时候,可以只扫描需要的那部分数据的时候,减少CPU和磁盘的访问量。同时列式存储是压缩友好的,使用压缩,可以综合CPU和磁盘,发挥最大的效能。
Dremel结合了Web搜索和并行DBMS的技术。Dremel借鉴了Web搜索中的“查询树”的概念,将一个相对巨大复杂的查询,分割成较小较简单的查询。大事化小,小事化了,能并发的在大量节点上跑。另外,和并行DBMS类似,Dremel可以提供了一个SQL-like的接口,就像Hive和Pig那样。
谷歌的图数据计算框架Pregel
谷歌MapReduce是专门为抓取、分析世界上最庞大的图形架构-internet而设计的,但针对大规模图算法(如图遍历(BFS)、PageRank,最短路径(SSSP)等)的计算则显得效率低下。因此,谷歌构建了Pregel。
Pregel给人的印象非常深刻。Pregel不仅能高效执行SSSP或PageRank算法,更令人惊讶的是,公布的数据显示Pregel处理一个有着几十亿节点、上万亿条边的图,只需数分钟即可完成,其执行时间随着图的大小呈线性增长。
Pregel基于BSP模型,就是“计算”-“通信”-“同步”的模式:
- 输入输出为有向图
- 分成超步
- 以节点为中心计算,超步内每个节点执行自己的任务,执行节点的顺序不确定
- 两个超步之间是通信阶段
在Pregel中,以节点为中心计算。Step 0时每节点都活动着,每个节点主动“给停止投票”进入不活动状态。如果接收到消息,则激活。没有活动节点和消息时,整个算法结束。容错是通过检查点来做的。在每个超步开始的时候,对主从节点分别备份。
总结
尽管当前大数据技术的核心依然是Hadoop,但谷歌却已经为我们展现了许多更先进的大数据技术。谷歌开发这些技术的本意并不是要立刻抛弃掉MapReduce,但毫无疑问这是未来大数据技术的趋势。尽管已经出现了上述大数据技术的开源实现,但我们不禁要问,Hadoop的辉煌还能延续多久?
原文链接:Why the days are numbered for hadoop as we know it
谷歌Dremel即时数据分析解决方案的更多相关文章
- myVision云服务商业数据分析解决方案
类型: 定制服务 软件包: business intelligence internet retailing solution collateral 联系服务商 产品详情 解决方案 概要 2014年, ...
- 【XMPP】基于XMPP的即时通讯解决方案
什么是XMPP 介绍XMPP之前,先来看看GTalk. GTalk是Google推出的IM(Instant Messaging,即时通讯)软件,类似于QQ和MSN. 从技术角度来说,GTalk与QQ和 ...
- 【转载】 clusterdata-2011-2 谷歌集群数据分析(三)
原文地址: https://blog.csdn.net/yangss123/article/details/78306270 由于原文声明其原创文章不得允许不可转载,故这里没有转载其正文内容. --- ...
- 【转载】 clusterdata-2011-2 谷歌集群数据分析(二)--task_usage
原文地址: https://blog.csdn.net/yangss123/article/details/78298749 由于原文声明其原创文章不得允许不可转载,故这里没有转载其正文内容. --- ...
- 【转载】 clusterdata-2011-2 谷歌集群数据分析(一)
原文地址: https://blog.csdn.net/yangss123/article/details/78298679 由于原文声明其原创文章不得允许不可转载,故这里没有转载其正文内容. --- ...
- 【转载】 谷歌集群数据分析 clusterdata-2011-2
原文地址: https://www.twblogs.net/a/5c2dc304bd9eee35b21c418b/zh-cn ------------------------------------- ...
- Hadoop的辉煌还能延续多久?
摘要:Hadoop已经成为大数据的代名词.短短几年间,Hadoop从一种边缘技术成为事实上的标准.而另一方面,MapReduce在谷歌已不再显赫.当企业瞩目MapReduce的时候,谷歌好像早已进入到 ...
- 用Storm轻松实时大数据分析【翻译】
原文地址 简单易用,Storm让大数据分析变得轻而易举. 如今,公司在日常运作中经常会产生TB(terabytes)级的数据.数据来源包括从网络传感器捕获的,到Web,社交媒体,交易型业务数据,以及其 ...
- Hadoop专业解决方案-第1章 大数据和Hadoop生态圈
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第1章 大数据和Hadoop生态圈小组已经翻译完成,在此 ...
随机推荐
- 结构-行为-样式-requireJs实现图片轮播插件
最近工作需要,就自己写了一个图片轮播插件,不过想到要集成到框架中,于是又用RequireJs改了一遍. 主要文件: style.css jquery-1.11.1.min.js require.js ...
- MySQL 性能优化神器 Explain 使用分析
简介 MySQL 提供了一个 EXPLAIN 命令, 它可以对 SELECT 语句进行分析, 并输出 SELECT 执行的详细信息, 以供开发人员针对性优化. EXPLAIN 命令用法十分简单, 在 ...
- C#开发学习——存储过程
举个例子: 带输入参数的存储过程计算班级中英语和数学不及格的人数 if(exists(select * from sys.objects where name='usp_GetFailCou ...
- linux基础命令大全
编辑器 ed vi/vim (交互式) sed (非交互) vi/vim 的使用 1.命令模式 移动光标 方向键 hjkl H L M G 1G nG 复制行 yy nyy 粘贴 p 删除行 dd n ...
- tnvm 安装模块不能找到关联模块问题
export NODE_PATH='/Users/yuqi/.tnvm/lib/node_modules' export PATH='/Users/yuqi/.tnvm/bin':$PATH sour ...
- digitalocean Vultr Linode 三家海外vps最新真实情况
中国有大批用户,在使用海外vps服务器.好处是不言而喻的:性价比高.带宽大.免备案.可搭梯子,没有后门监控. 有趣的是,每一年的周期观察,都能发现海外vps对中国大陆的线路速度.可用性变化.过去速度快 ...
- JS 高效快速的数组去重
Array.prototype.uniquer = function() { var result = [], hash = {}; ; i < this.length; i++) { if ( ...
- Hex Workshop(16进制编辑利器) 6.7.2绿色版
软件名称: Hex Workshop 6.7.2绿色版(16进制编辑利器) 软件语言: 简体中文 授权方式: 免费软件 运行环境: Win 32位/64位 软件大小: 1.8MB 图片预览: 软件简介 ...
- C# 实现客户端程序自动更新
看到一篇不错的帖子,可能以后会用到,果断收藏 文章来源 博客园jenry(云飞扬)http://www.cnblogs.com/jenry/archive/2006/08/15/477302.html ...
- String、StringBuffer和StringBuilder区别及性能分析
1.性能比较:StringBuilder > StringBuffer > String 2.String <(StringBuffer,StringBuilder)的原因 S ...