c++11中增加了线程,使得我们可以非常方便的创建线程,它的基本用法是这样的:

void f(int n);
std::thread t(f, n + 1);
t.join();

  但是线程毕竟是属于比较低层次的东西,有时候使用有些不便,比如我希望获取线程函数的返回结果的时候,我就不能直接通过thread.join()得到结果,这时就必须定义一个变量,在线程函数中去给这个变量赋值,然后join,最后得到结果,这个过程是比较繁琐的。c++11还提供了异步接口std::async,通过这个异步接口可以很方便的获取线程函数的执行结果。std::async会自动创建一个线程去调用线程函数,它返回一个std::future,这个future中存储了线程函数返回的结果,当我们需要线程函数的结果时,直接从future中获取,非常方便。但是我想说的是,其实std::async给我们提供的便利可不仅仅是这一点,它首先解耦了线程的创建和执行,使得我们可以在需要的时候获取异步操作的结果;其次它还提供了线程的创建策略(比如可以通过延迟加载的方式去创建线程),使得我们可以以多种方式去创建线程。在介绍async具体用法以及为什么要用std::async代替线程的创建之前,我想先说一说std::future、std::promise和std::packaged_task。

std::future

  std::future是一个非常有用也很有意思的东西,简单说std::future提供了一种访问异步操作结果的机制。从字面意思来理解,它表示未来,我觉得这个名字非常贴切,因为一个异步操作我们是不可能马上就获取操作结果的,只能在未来某个时候获取,但是我们可以以同步等待的方式来获取结果,可以通过查询future的状态(future_status)来获取异步操作的结果。future_status有三种状态:

  • deferred:异步操作还没开始
  • ready:异步操作已经完成
  • timeout:异步操作超时
//查询future的状态
std::future_status status;
do {
status = future.wait_for(std::chrono::seconds(1));
if (status == std::future_status::deferred) {
std::cout << "deferred\n";
} else if (status == std::future_status::timeout) {
std::cout << "timeout\n";
} else if (status == std::future_status::ready) {
std::cout << "ready!\n";
}
} while (status != std::future_status::ready);

  获取future结果有三种方式:get、wait、wait_for,其中get等待异步操作结束并返回结果,wait只是等待异步操作完成,没有返回值,wait_for是超时等待返回结果。

std::promise

  std::promise为获取线程函数中的某个值提供便利,在线程函数中给外面传进来的promise赋值,当线程函数执行完成之后就可以通过promis获取该值了,值得注意的是取值是间接的通过promise内部提供的future来获取的。它的基本用法:

    std::promise<int> pr;
std::thread t([](std::promise<int>& p){ p.set_value_at_thread_exit(9); },std::ref(pr));
std::future<int> f = pr.get_future();
auto r = f.get();

std::packaged_task

  std::packaged_task它包装了一个可调用的目标(如function, lambda expression, bind expression, or another function object),以便异步调用,它和promise在某种程度上有点像,promise保存了一个共享状态的值,而packaged_task保存的是一个函数。它的基本用法:

    std::packaged_task<int()> task([](){ return 7; });
std::thread t1(std::ref(task));
std::future<int> f1 = task.get_future();
auto r1 = f1.get();

std::promise、std::packaged_task和std::future的关系

  至此, 我们介绍了std::async相关的几个对象std::future、std::promise和std::packaged_task,其中std::promise和std::packaged_task的结果最终都是通过其内部的future返回出来的,不知道读者有没有搞糊涂,为什么有这么多东西出来,他们之间的关系到底是怎样的?且听我慢慢道来,std::future提供了一个访问异步操作结果的机制,它和线程是一个级别的属于低层次的对象,在它之上高一层的是std::packaged_task和std::promise,他们内部都有future以便访问异步操作结果,std::packaged_task包装的是一个异步操作,而std::promise包装的是一个值,都是为了方便异步操作的,因为有时我需要获取线程中的某个值,这时就用std::promise,而有时我需要获一个异步操作的返回值,这时就用std::packaged_task。那std::promise和std::packaged_task之间又是什么关系呢?说他们没关系也关系,说他们有关系也有关系,都取决于你了,因为我可以将一个异步操作的结果保存到std::promise中。如果读者还没搞清楚他们的关系的话,我就用更通俗的话来解释一下。比如,一个小伙子给一个姑娘表白真心的时候也许会说:”我许诺会给你一个美好的未来“或者”我会努力奋斗为你创造一个美好的未来“。姑娘往往会说:”我等着“。现在我来将这三句话用c++11来翻译一下:

小伙子说:我许诺会给你一个美好的未来等于c++11中"std::promise a std::future"; 
小伙子说:我会努力奋斗为你创造一个美好的未来等于c++11中"std::packaged_task a future"; 
姑娘说:我等着等于c++11中"future.get()/wait()";

  小伙子两句话的个中差异,自己琢磨一下,这点差异也是std::promise和std::packaged_task的差异。现实中的山盟海誓靠不靠得住我不知道,但是c++11中的许诺和未来是一定可靠的,发起来了许诺就一定有未来。细想起来c++11标准的制定者选定的关键字真是贴切而有意思!好了,插科打诨到此了,现在言归正传,回过头来说说std::async。

为什么要用std::async代替线程的创建

  std::async又是干啥的,已经有了td::future、std::promise和std::packaged_task,够多的了,真的还要一个std::async来凑热闹吗,std::async表示很委屈:我不是来凑热闹的,我是来帮忙的。是的,std::async是为了让用户的少费点脑子的,它让这三个对象默契的工作。大概的工作过程是这样的:std::async先将异步操作用std::packaged_task包装起来,然后将异步操作的结果放到std::promise中,这个过程就是创造未来的过程。外面再通过future.get/wait来获取这个未来的结果,怎么样,std::async真的是来帮忙的吧,你不用再想到底该怎么用std::future、std::promise和std::packaged_task了,std::async已经帮你搞定一切了!

  现在来看看std::async的原型async(std::launch::async | std::launch::deferred, f, args...),第一个参数是线程的创建策略,有两种策略,默认的策略是立即创建线程:

  • std::launch::async:在调用async就开始创建线程。
  • std::launch::deferred:延迟加载方式创建线程。调用async时不创建线程,直到调用了future的get或者wait时才创建线程。

第二个参数是线程函数,第三个参数是线程函数的参数。

std::async基本用法:

std::future<int> f1 = std::async(std::launch::async, [](){
return 8;
}); cout<<f1.get()<<endl; //output: 8 std::future<int> f2 = std::async(std::launch::async, [](){
cout<<8<<endl;
}); f2.wait(); //output: 8 std::future<int> future = std::async(std::launch::async, [](){
std::this_thread::sleep_for(std::chrono::seconds(3));
return 8;
}); std::cout << "waiting...\n";
std::future_status status;
do {
status = future.wait_for(std::chrono::seconds(1));
if (status == std::future_status::deferred) {
std::cout << "deferred\n";
} else if (status == std::future_status::timeout) {
std::cout << "timeout\n";
} else if (status == std::future_status::ready) {
std::cout << "ready!\n";
}
} while (status != std::future_status::ready); std::cout << "result is " << future.get() << '\n';
可能的结果:
waiting...
timeout
timeout
ready!
result is 8

总结:

  std::async是更高层次上的异步操作,使我们不用关注线程创建内部细节,就能方便的获取异步执行状态和结果,还可以指定线程创建策略,应该用std::async替代线程的创建,让它成为我们做异步操作的首选。

C++并发编程之std::async(), std::future, std::promise, std::packaged_task的更多相关文章

  1. 并发编程之Callable异步,Future模式

    Callable 在Java中,创建线程一般有两种方式,一种是继承Thread类,一种是实现Runnable接口.然而,这两种方式的缺点是在线程任务执行结束后,无法获取执行结果.我们一般只能采用共享变 ...

  2. python并发编程之asyncio协程(三)

    协程实现了在单线程下的并发,每个协程共享线程的几乎所有的资源,除了协程自己私有的上下文栈:协程的切换属于程序级别的切换,对于操作系统来说是无感知的,因此切换速度更快.开销更小.效率更高,在有多IO操作 ...

  3. Python进阶:并发编程之Futures

    区分并发和并行 并发(Concurrency). 由于Python 的解释器并不是线程安全的,为了解决由此带来的 race condition 等问题,Python 便引入了全局解释器锁,也就是同一时 ...

  4. Python核心技术与实战——十七|Python并发编程之Futures

    不论是哪一种语言,并发编程都是一项非常重要的技巧.比如我们上一章用的爬虫,就被广泛用在工业的各个领域.我们每天在各个网站.App上获取的新闻信息,很大一部分都是通过并发编程版本的爬虫获得的. 正确并合 ...

  5. [转载]并发编程之Operation Queue和GCD

    并发编程之Operation Queue http://www.cocoachina.com/applenews/devnews/2013/1210/7506.html 随着移动设备的更新换代,移动设 ...

  6. Java并发编程之CAS

    CAS(Compare and swap)比较和替换是设计并发算法时用到的一种技术.简单来说,比较和替换是使用一个期望值和一个变量的当前值进行比较,如果当前变量的值与我们期望的值相等,就使用一个新值替 ...

  7. 并发编程之wait()、notify()

    前面的并发编程之volatile中我们用程序模拟了一个场景:在main方法中开启两个线程,其中一个线程t1往list里循环添加元素,另一个线程t2监听list中的size,当size等于5时,t2线程 ...

  8. 并发编程之 Exchanger 源码分析

    前言 JUC 包中除了 CountDownLatch, CyclicBarrier, Semaphore, 还有一个重要的工具,只不过相对而言使用的不多,什么呢? Exchange -- 交换器.用于 ...

  9. 并发编程之 Condition 源码分析

    前言 Condition 是 Lock 的伴侣,至于如何使用,我们之前也写了一些文章来说,例如 使用 ReentrantLock 和 Condition 实现一个阻塞队列,并发编程之 Java 三把锁 ...

随机推荐

  1. 学会查看Linux手册页(man文档)

    区段1:用户指令区段2:系统调用区段3:程序库调用区段4:设备区段5:文件格式区段6:游戏区段7:杂项区段8:系统指令区段9:内核内部指令区段n:Tcl或Tk指令 如果记不清楚工具或者函数的完整名字, ...

  2. CSS快速入门-前端布局2(唯品会1)

    上一篇我模仿了抽屉网站,这一节我来对唯品会主页进行模仿. 我觉得写一个主页大概思路如下: 1.确定整体布局方式:(html框架布局) 2.针对每一块进行细化,尽量做到模块化.(css) 3.加上特效效 ...

  3. Flume的简单理解

    由于没具体研究过画图,以前在公司每天都用Excel,所以很多图画都是画在了Excel上再剪切的,看着可能不太舒服. 先来看一下数据走向: 这样我们就大致了解了flume是干嘛的,在什么位置了. Flu ...

  4. Katalon Studio学习笔记(二)——请求响应中文乱码解决方法

    Katalon Studio接口测试发现返回的中文消息是乱码,这是因为KS的编码格式是UTF-8,因此导致中文字体出现乱码.如下图所示: 在我们的系统中添加一个名字为JAVA_TOOL_OPTIONS ...

  5. NO--12模拟服务器端请求之node.js

    最近几天项目上线,工作比较忙,没时间更博了,好在今天有点时间并且同事问道我一个问题,正好一块解决 使用 Vue 写项目肯定会遇到一个问题,如何模拟服务端请求数据,那这就需要用到 node.js 了. ...

  6. MAC下搭建Hexo博客

    一.前言 Hexo是一款快速.简洁,基于node.js的强力框架. (1)超快速度:Node.js 所带来的超快生成速度,让上百个页面在几秒内瞬间完成渲染. (2)支持markdown:Hexo 支持 ...

  7. CMS漏洞检测工具 – CMSmap

    CMSmap是一个Python编写的针对开源CMS(内容管理系统)的安全扫描器,它可以自动检测当前国外最流行的CMS的安全漏洞. CMSmap主要是在一个单一的工具集合了不同类型的CMS的常见的漏洞. ...

  8. React Router学习

    React Router教程 本教程引用马伦老师的的教程 React项目的可用的路由库是React-Router,当然这也是官方支持的.它也分为: react-router 核心组件 react-ro ...

  9. C++ 多态Polymorphism 介绍+动态绑定、静态绑定

    什么是多态? 多态(polymorphism)一词最初来源于希腊语polumorphos,含义是一种物质的多种形态. 在专业术语中,多态是一种运行时绑定机制(run-time binding) ,通过 ...

  10. XML中<beans>属性

    <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w ...