洛谷P3702 [SDOI2017]序列计数
题目大意:
Alice想要得到一个长度为\(n\)的序列,序列中的数都是不超过\(m\)的正整数,而且这\(n\)个数的和是\(p\)的倍数。
Alice还希望,这\(n\)个数中,至少有一个数是质数。
Alice想知道,有多少个序列满足她的要求。
对\(100\%\)的数据,\(1\leq n \leq 10^9,1\leq m \leq 2\times 10^7,1\leq p\leq 100\)
直接求不太好求,容斥一下,先求出全部的方案,再除掉没有质数的
全部的方案怎么求?
考虑\(dp\),设\(f[i][j]\)表示\(i\)个数字,其和\(mod\ p\)为\(j\)的方案数,可以得到转移方程\(f[i_1+i_2][(j_1+j_2)\%p]=f[i_1][j_1]*f[i_2][j_2]\)
然后跑一年就出来了
考虑第一维,发现好像挺像个指数的运算
那我们把第一维用快速幂优化掉
当然我们要提前求出\(i=1\)时的\(f[i][j]\),这个循环一遍就完了
设\(g[i][j]\)表示\(i\)个数字,其和\(mod\ p\)为\(j\)的且不含质数方案数,转移方程相同,只是初始的时候质数不贡献答案
然后就好了~
#include<bits/stdc++.h>
using namespace std;
namespace red{
#define int long long
inline int read()
{
int x=0;char ch,f=1;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-') f=0,ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
const int N=2e7+10,p=20170408;
int n,m,k;
int f[233],g[233],F[233],G[233],c[233];
signed prime[N>>1],num;
bool vis[N];
inline void work(int *a,int *b,int *d)
{
for(int i=0;i<k;++i)
{
for(int j=0;j<k;++j)
{
(c[i+j]+=a[i]*b[j])%=p;
}
}
for(int i=0;i<k;++i)
{
d[i]=(c[i]+c[i+k])%p;
c[i]=c[i+k]=0;
}
}
inline void main()
{
n=read(),m=read(),k=read();
f[1]=g[1]=F[0]=G[0]=1;
for(int i=2;i<=m;++i)
{
++f[i%k];
if(!vis[i]) prime[++num]=i;
else ++g[i%k];
for(int j=1;j<=num;++j)
{
if(i*prime[j]>m) break;
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
while(n)
{
if(n&1) work(F,f,F),work(G,g,G);
work(f,f,f);
work(g,g,g);
n>>=1;
}
printf("%lld\n",(F[0]-G[0]+p)%p);
}
}
signed main()
{
red::main();
return 0;
}
等等,我们发现了什么?
看这里
for(int i=0;i<k;++i)
{
for(int j=0;j<k;++j)
{
(c[i+j]+=a[i]*b[j])%=p;
}
}
一个卷积!在这里写个任意模数\(ntt\)岂不美哉
虽然对于这道题来说是没事找事
代码先鸽子了,毕竟我还不会任意模数\(ntt\)
洛谷P3702 [SDOI2017]序列计数的更多相关文章
- 洛咕 P3702 [SDOI2017]序列计数
和https://www.cnblogs.com/xzz_233/p/10060753.html一样,都是多项式快速幂,还比那个题水. 设\(a[i]\)表示\([1,m]\)中$ \mod p\(余 ...
- P3702 [SDOI2017]序列计数
P3702 [SDOI2017]序列计数 链接 分析: 首先可以容斥掉,用总的减去一个质数也没有的. 然后可以dp了,f[i][j]表示到第i个数,和在模p下是j的方案数,矩阵快速幂即可. 另一种方法 ...
- [BZOJ 4818/LuoguP3702][SDOI2017] 序列计数 (矩阵加速DP)
题面: 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4818 Solution 看到这道题,我们不妨先考虑一下20分怎么搞 想到暴力,本蒟 ...
- [Sdoi2017]序列计数 [矩阵快速幂]
[Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...
- BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法
BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...
- 洛谷 P1596 [USACO10OCT]湖计数Lake Counting
题目链接 https://www.luogu.org/problemnew/show/P1596 题目描述 Due to recent rains, water has pooled in vario ...
- 洛谷P1144 最短路计数(SPFA)
To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...
- 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)
4818: [Sdoi2017]序列计数 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 560 Solved: 359 Description Al ...
- 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法
[BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...
随机推荐
- 【2019.10.7 CCF-CSP-2019模拟赛 T1】树上查询(tree)(思维)
思维 这道题应该算是一道思维题吧. 首先你要想到,既然这是一棵无根树,就要明智地选择根--以第一个黑点为根(不要像我一样习惯性以\(1\)号点为根,结果直到心态爆炸都没做出来). 想到这一点,这题就很 ...
- python奇闻杂技
第一天 01 从计算机到程序设计语言 02 python环境配置 03 实例一:温度转换 04 python语法分析 第二天 01 深入理解python语言 02 实例二,python蟒蛇配置 03 ...
- 【翻译】spring-data 之JdbcTemplate 使用
文档 Jdbc的使用 基础的代码结构: 一个Application作为入口.IUserRepository和UserRepository作为具体的实现.applicationContext.xml定义 ...
- Ubuntu 16.04 安装 mujoco, mujoco_py 和 gym
Mujoco (1)官网(https://www.roboti.us/license.html)注册 license,教育邮箱注册可以免费使用一年.注意:一个邮箱账号只能供一台主机使用. 填写个人信息 ...
- 【C#】C#获取本地的内网(局域网)和外网(公网)IP地址的方法
1.获取本机的IP地址集合: /// <summary> /// 获取本机所有ip地址 /// </summary> /// <param name="netT ...
- php date获取前一天的时间
结果: 结论: 第二种方式只使用了一个函数,所以更快一些,速度大约是第一种的两倍
- IT兄弟连 Java语法教程 数据类型3
字符型 在Java中,用于存储字符串的数据类型是char.然而,C/C++程序员要当心:Java中的char与C或C++中的char是不同的.在C/C++中,char的宽度是8位.而在Java中不是这 ...
- 【分布式存储】Glusterfs快速搭建
目录 环境准备 步骤1,保证至少有三台服务器 步骤2,格式化和配置硬盘 步骤3,安装GlusterFS 步骤4,配置防火墙 步骤5,配置 trusted pool 步骤6,设置GlusterFS卷 步 ...
- laravel中使用FormRequest进行表单验证,验证异常返回JSON
通常在项目中,我们会对大量的前端提交过来的表单进行验证,如果不通过,则返回错误信息. 前端为了更好的体验,都使用ajax进行表单提交,虽然 validate() 方法能够根据前端的不同请求方式,返回不 ...
- WPF中Button的背景图片,实现禁止IsMouseOver时显示默认
<Button x:Name="btnPickUpNum" Click="PickUpNum_OnClick" Grid.Row="1" ...