awesome-RecSys
https://github.com/jihoo-kim/awesome-RecSys?fbclid=IwAR1m6OebmqO9mfLV1ta4OTihQc9Phw8WNS4zdr5IeT1X1OLWQvLk0Wz45f4
awesome-RecSys
A curated list of awesome Recommender System - designed by Jihoo Kim
Table of Contents
1. Books
- Recommender Systems: The Textbook (2016, Charu Aggarwal)
- Recommender Systems Handbook 2nd Edition (2015, Francesco Ricci)
- Recommender Systems Handbook 1st Edition (2011, Francesco Ricci)
- Recommender Systems An Introduction (2011, Dietmar Jannach) slides
2. Conferences
- AAAI (AAAI Conference on Artificial Intelligence)
- CIKM (ACM International Conference on Information and Knowledge Management)
- CSCW (ACM Conference on Computer-Supported Cooperative Work & Social Computing)
- ICDM (IEEE International Conference on Data Mining)
- IJCAI (International Joint Conference on Artificial Intelligence)
- ICLR (International Conference on Learning Representations)
- ICML (International Conference on Machine Learning)
- IUI (International Conference on Intelligent User Interfaces)
- NIPS (Neural Information Processing Systems)
- RecSys (ACM Conference on Recommender Systems)
- SDM (SIAM International Conference on Data Mining)
- SIGIR (ACM SIGIR Conference on Research and development in information retrieval)
- SIGKDD (ACM SIGKDD International Conference on Knowledge discovery and data mining)
- SIGMOD (ACM SIGMOD International Conference on Management of Data)
- VLDB (International Conference on Very Large Databases)
- WSDM (ACM International Conference on Web Search and Data Mining)
- WWW (International World Wide Web Conferences)
3. Researchers
- George Karypis (University of Minnesota)
- Joseph A. Konstan (University of Minnesota)
- Philip S. Yu (University of Illinons at Chicago)
- Charu Aggarwal (IBM T. J. Watson Research Center)
- Martin Ester (Simon Fraser University)
- Paul Resnick (University of Michigan)
- Peter Brusilovsky (University of Pittsburgh)
- Bamshad Mobasher (DePaul University)
- Alexander Tuzhilin (New York University)
- Yehuda Koren (Google)
- Barry Smyth (University College Dublin)
- Lior Rokach (Ben-Gurion University of the Negev)
- Loren Terveen (University of Minnesota)
- Chris Volinsky (AT&T Labs)
- Ed H. Chi (Google AI)
- Laks V.S. Lakshmanan (University of British Columbia)
- Badrul Sarwar (LinkedIn)
- Francesco Ricci (Free University of Bozen-Bolzano)
- Robin Burke (University of Colorado, Boulder)
- Brent Smith (Amazon)
- Greg Linden (Amazon, Microsoft)
- Hao Ma (Facebook AI)
- Giovanni Semeraro (University of Bari Aldo Moro)
- Dietmar Jannach (University of Klagenfurt)
4. Papers
- Explainable Recommendation: A Survey and New Perspectives (2018, Yongfeng Zhang)
- Deep Learning based Recommender System: A Survey and New Perspectives (2018, Shuai Zhang)
- Collaborative Variational Autoencoder for Recommender Systems (2017, Xiaopeng Li)
- Neural Collaborative Filtering (2017, Xiangnan He)
- Deep Neural Networks for YouTube Recommendations (2016, Paul Covington)
- Wide & Deep Learning for Recommender Systems (2016, Heng-Tze Cheng)
- Collaborative Denoising Auto-Encoders for Top-N Recommender Systems (2016, Yao Wu)
- AutoRec: Autoencoders Meet Collaborative Filtering (2015, Suvash Sedhain)
- Collaborative Deep Learning for Recommender Systems (2015, Hao Wang)
- Collaborative Filtering beyond the User-Item Matrix A Survey of the State of the Art and Future Challenges (2014, Yue Shi)
- Deep content-based music recommendation (2013, Aaron van den Oord)
- Time-aware Point-of-interest Recommendation (2013, Quan Yuan)
- Location-based and Preference-Aware Recommendation Using Sparse Geo-Social Networking Data (2012, Jie Bao)
- Context-Aware Recommender Systems for Learning: A Survey and Future Challenges (2012, Katrien Verbert)
- Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation (2011, Mao Ye)
- Recommender Systems with Social Regularization (2011, Hao Ma)
- The YouTube Video Recommendation System (2010, James Davidson)
- Matrix Factorization Techniques for Recommender Systems (2009, Yehuda Koren)
- A Survey of Collaborative Filtering Techniques (2009, Xiaoyuan Su)
- Collaborative Filtering with Temporal Dynamics (2009, Yehuda Koren)
- Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model (2008, Yehuda Koren)
- Collaborative Filtering for Implicit Feedback Datasets (2008, Yifan Hu)
- SoRec: social recommendation using probabilistic matrix factorization (2008, Hao Ma)
- Flickr tag recommendation based on collective knowledge (2008, Borkur Sigurbjornsson)
- Restricted Boltzmann machines for collaborative filtering (2007, Ruslan Salakhutdinov)
- Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions(2005, Gediminas Adomavicius)
- Evaluating collaborative filtering recommender systems (2004, Jonatan L. Herlocker)
- Amazon.com Recommendations: Item-to-Item Collaborative Filtering (2003, Greg Linden)
- Content-boosted collaborative filtering for improved recommendations (2002, Prem Melville)
- Item-based collaborative filtering recommendation algorithms (2001, Badrul Sarwar)
- Explaining collaborative filtering recommendations (2000, Jonatan L. Herlocker)
- An algorithmic framework for performing collaborative filtering (1999, Jonathan L. Herlocker)
- Empirical analysis of predictive algorithms for collaborative filtering (1998, John S. Breese)
- Social information filtering: Algorithms for automating "word of mouth" (1995, Upendra Shardanand)
- GroupLens: an open architecture for collaborative filtering of netnews (1994, Paul Resnick)
- Using collaborative filtering to weave an information tapestry (1992, David Goldberg)
5. GitHub Repositories
- List_of_Recommender_Systems (Software, Open Source, Academic, Benchmarking, Applications, Books)
- Deep-Learning-for-Recommendation-Systems (Papers, Blogs, Worshops, Tutorials, Software)
- RecommenderSystem-Paper (Papers, Tools, Frameworks)
- RSPapers (Papers)
- awesome-RecSys-papers (Papers)
- DeepRec (Tensorflow Codes)
- RecQ (Tensorflow Codes)
- NeuRec (Tensorflow Codes)
- Surprise (Python Library)
- LightFM (Python Library)
- Spotlight (Python Library)
- python-recsys (Python Library)
- TensorRec (Python Library)
- CaseRecommender (Python Library)
- recommenders (Jupyter Notebook Tutorial)
6. Useful Sites
- WikiCFP - Recommender System (Call For Papers of Conferences, Workshops and Journals - Recommender System)
- Guide2Research - Top CS Conference (Top Computer Science Conferences)
- PapersWithCode - Recommender System (Papers with Code - Recommender System)
- Coursera - Recommender System (University of Minnesota - Joseph A. Konstan)
7. Youtube Videos
- RecSys Paper Presentation Videos (ACM RecSys)
- Building Recommender System with Machine Learning and AI (Youtube SEO)
- Machine Learning - FULL COURSE | Andrew Ng | Stanford University (Lecture 16.1 ~ Lecture 16.6)
- Mining Massive Datasets - FULL COURSE | Stanford University (Lecture 41 ~ Lecture 45)
- Text Retrieval and Search Engines - FULL COURSE | UIUC (Lecture 38 ~ Lecture 42)
- Recommendation Systems - Learn Python for Data Science #3 (Siraj Raval)
- How does Netflix recommend movies? Matrix Factorization (Luis Serrano)
8. SlideShare PPT
- Recommender system introduction (Liang Xiang)
- Recommender system algorithm and architecture (Liang Xiang)
- How to build a recommender system? (Coen Stevens)
awesome-RecSys的更多相关文章
- Recommending branded products from social media -RecSys 2013-20160422
1.Information publication:RecSys 2013 author:zhengyong zhang 2.What 是对上一篇论文的拓展:利用社交媒体中用户信息 对用户购买的类别排 ...
- 近年Recsys论文
2015年~2017年SIGIR,SIGKDD,ICML三大会议的Recsys论文: [转载请注明出处:https://www.cnblogs.com/shenxiaolin/p/8321722.ht ...
- 【刷题】牛客网看到的鹅厂ML面筋-部分问题RecSys相关
昨天下午六点半的电话面试,其实我已经有了一个不错的实习offer ,不是特别想去腾讯了,没有太怎么准备,接的电话. 整个面试15分钟,开始就是自我介绍,接着问项目,和上一段百度实习经历.问题大致如下: ...
- RecSys Challenge 2015
[The Task] Given a sequence of click events performed by some user during a typical session in an e- ...
- Matrix Factorization in RecSys
矩阵分解在推荐系统中的应用. 参考链接:知乎. 传统SVD,Funk-SVD,Bias-SVD,SVD++. SVD奇异值分解及其意义. 漫谈奇异值分解.
- #研发中间件介绍#定时任务调度与管理JobCenter
郑昀 最后更新于2014/11/11 关键词:定时任务.调度.监控报警.Job.crontab.Java 本文档适用人员:研发员工 没有JobCenter时我们要面对的: 电商业务链条很长,业 ...
- 分布式系统(Distributed System)资料
这个资料关于分布式系统资料,作者写的太好了.拿过来以备用 网址:https://github.com/ty4z2008/Qix/blob/master/ds.md 希望转载的朋友,你可以不用联系我.但 ...
- #研发解决方案介绍#Recsys-Evaluate(推荐评测)
郑昀 基于刘金鑫文档 最后更新于2014/12/1 关键词:recsys.推荐评测.Evaluation of Recommender System.piwik.flume.kafka.storm.r ...
- TOP 10开源的推荐系统简介
最近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature.LibMF.LibFM等,也有重量级的适用于工业系统的 Mahout.Oryx.Eas ...
- 使用Apriori算法和FP-growth算法进行关联分析
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...
随机推荐
- Windbg断点调试.net程序
程序员都知道,在生产环境中,如果没有系统日志,对问题的分析将非常的困难.即使有日志,有时候也会因为日志记录的不全面,而导致问题不能分析清楚.其实,Windbg里面有Live Debug功能,正好可以借 ...
- RabbitMQ 在Windows环境下安装
1. 下载RabbitMQ和Erlang RabbitMQ下载地址 https://www.rabbitmq.com/install-windows.html RabbitMQ是用Erlang编程语 ...
- 一些个人认为特别的安卓 App 介绍
MoboPlayer (一款息屏也能播放视频的 App) 快图浏览(快速列出手机中的图片和视频,小巧且不会申请安卓各种权限)
- 极简 Spring Boot 整合 Thymeleaf 页面模板
虽然现在慢慢在流行前后端分离开发,但是据松哥所了解到的,还是有一些公司在做前后端不分的开发,而在前后端不分的开发中,我们就会需要后端页面模板(实际上,即使前后端分离,也会在一些场景下需要使用页面模板, ...
- JS中判断是中文数字的函数
function checkcnnum(str) { ; const zh = ['零', '一', '二', '三', '四', '五', '六', '七', '八', '九','十','百','千 ...
- 基于.net EF6 MVC5+WEB Api 的Web系统框架总结(4)-Excel文件读、写操作
Excel文件读.写可以使用Office自带的库(Microsoft.Office.Interop.Excel),前提是本机须安装office才能运行,且不同的office版本之间可能会有兼容问题.还 ...
- Flask简介及使用
目录 Flask简介 wsgiref wsgiref简单应用 两个依赖 werkzeug Jinja2 简单使用 安装 flask快速使用 Django与Flask返回值的对比 Flask简介 F ...
- Winform中设置ZedGraph的曲线为折线、点折线、散点图
场景 Winform中设置ZedGraph的曲线为散点图: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/102465399 在上 ...
- i春秋——“百度杯”CTF比赛 十月场——Not Found(http请求方法,client-ip伪造ip)
这道题也是让我很迷... 打开就是not found,让我一度以为是服务器挂了,细看发现有个404.php 访问也没发现什么东西,只有来自出题人的嘲讽 haha~ 不过在首页的header中发现个奇怪 ...
- WPE 过滤器 高级滤镜
与普通滤镜区别就是: 普通滤镜固定位置 高级滤镜固定数值 普通滤镜 指定位置1~6,对应发送数据的固定1~6字节 高级滤镜 首先,勾选高级-自发现有连锁位置 记得,偏移001对应修改000位置,也可称 ...