作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

图(graph)是一种比较松散的数据结构。它有一些节点(vertice),在某些节点之间,由边(edge)相连。节点的概念在树中也出现过,我们通常在节点中储存数据。边表示两个节点之间的存在关系。在树中,我们用边来表示子节点和父节点的归属关系。树是一种特殊的图,但限制性更强一些。

这样的一种数据结构是很常见的。比如计算机网络,就是由许多节点(计算机或者路由器)以及节点之间的边(网线)构成的。城市的道路系统,也是由节点(路口)和边(道路)构成的图。地铁系统也可以理解为图,地铁站可以认为是节点。基于图有许多经典的算法,比如求图中两个节点的最短路径,求最小伸展树等。

图的经典研究是柯尼斯堡七桥问题(Seven Bridges of Königsberg)。柯尼斯堡是现今的加里宁格勒,城市中有一条河流过,河中有两个小岛。有七座桥桥连接河的两岸和两个小岛。送信员总想知道,有没有一个办法,能不重复的走过7个桥呢?

(这个问题在许多奥数教材中称为"一笔画"问题)

欧拉时代的柯尼斯堡地图

柯尼斯堡的可以看作由7个边和4个节点构成的一个图:

这个问题最终被欧拉巧妙的解决。七桥问题也启发了一门新的数学学科——图论(graph theory)的诞生。欧拉的基本思路是,如果某个节点不是起点或者终点,那么连接它的边的数目必须为偶数个(从一个桥进入,再从另一个桥离开)。对于柯尼斯堡的七桥,由于4个节点都为奇数个桥,而最多只能有两个节点为起点和终点,所以不可能一次走完。

图的定义

严格的说,图[$G = (V, E)$]是由节点的集合V和边的集合E构成的。一个图的所有节点构成一个集合[$V$]。一个边可以表示为[$(v_1, v_2)$],其中[$v_1, v_2 \in V$],即两个节点。如果[$(v_1, v_2)$]有序,即[$(v_1, v_2)$]与[$(v_2, v_1)$]不同,那么图是有向的(directed)。有序的边可以理解为单行道,只能沿一个方向行进。如果[$(v_1, v_2)$]无序,那么图是无向的(undirected)。无序的边可以理解成双向都可以行进的道路。一个无序的边可以看作连接相同节点的两个反向的有序边,所以无向图可以理解为有向图的一种特殊情况。

(七桥问题中的图是无向的。城市中的公交线路可以是无向的,比如存在单向环线)

图的一个路径(path)是图的一系列节点[$w_1, w_2, ..., w_n$],且对于[$1 \le i < n $],有[$ (w_i, w_{i+1}) \in E$]。也就是说,路径是一系列的边连接而成,路径的两端为两个节点。路径上边的总数称为路径的长度。乘坐地铁时,我们会在选择某个路径,来从A站到达B站。这样的路径可能有不止一条,我们往往会根据路径的长度以及沿线的拥挤状况,来选择一条最佳的路线。如果存在一条长度大于0的路径,该路径的两端为同一节点,那么认为该图中存在环路(cycle)。很明显,上海的地铁系统中存在环路。

找到一条环路

如果从每个节点,到任意一个其它的节点,都有一条路径的话,那么图是连通的(connected)。对于一个有向图来说,这样的连通称为强连通(strongly connected)。如果一个有向图不满足强连通的条件,但将它的所有边都改为双向的,此时的无向图是连通的,那么认为该有向图是弱连通(weakly connected)。

如果将有火车站的城市认为是节点,铁路是连接城市的边,这样的图可能是不连通的。比如北京和费城,北京有铁路通往上海,费城有铁路通往纽约,但北京和费城之间没有路径相连。

图的实现

一种简单的实现图的方法是使用二维数组。让数组a的每一行为一个节点,该行的不同元素表示该节点与其他节点的连接关系。如果[$(u, v) \in E$],那么a[u][v]记为1,否则为0。比如下面的一个包含三个节点的图:

可以简单表示为

a 1 2 3
1 0 1 1
2 0 0 0
3 0 1 0

这种实现方式所占据的空间为[$O(|V|^2)$],[$|V|$]为节点总数。所需内存随着节点增加而迅速增多。如果边不是很密集,那么很多数组元素记为0,只有稀疏的一些数组元素记为1,所以并不是很经济。

更经济的实现方式是使用邻接表(adjacency list),即记录每个节点所有的相邻节点。对于节点m,我们建立一个链表。对于任意节点k,如果有[$(m, k) \in E$],就将该节点放入到对应节点m的链表中。邻接表是实现图的标准方式。比如下面的图,

可以用如下的数据结构实现:

左侧为一个数组,每个数组元素代表一个节点,且指向一个链表。该链表包含有该数组元素所有的相邻元素。

总体上看,邻接表可以分为两部分。邻接表所占据的总空间为[$O(|V| + |E|)$]。数组部分储存节点信息,占据[$|V|$])的空间,即节点的总数。链表存储边的信息,占据[$|E|$]的空间,即边的总数。在一些复杂的问题中,定点和边还可能有其他的附加信息,我们可以将这些附加信息储存在相应的节点或者边的位置。

下面为具体的C代码:

/* By Vamei */
#include <stdio.h>
#include <stdlib.h> #define NUM_V 5 typedef struct node *position; /* node */
struct node {
int element;
position next;
}; /*
* operations (stereotype)
*/
void insert_edge(position, int, int);
void print_graph(position graph, int nv); /* for testing purpose */
void main()
{
struct node graph[NUM_V];
int i; // initialize the vertices
for(i=; i<NUM_V; i++) {
(graph+i)->element = i;
(graph+i)->next = NULL;
} // insert edges
insert_edge(graph,,);
insert_edge(graph,,);
insert_edge(graph,,);
insert_edge(graph,,);
insert_edge(graph,,); print_graph(graph,NUM_V);
} /* print the graph */
void print_graph(position graph, int nv) {
int i;
position p;
for(i=; i<nv; i++) {
p = (graph + i)->next;
printf("From %3d: ", i);
while(p != NULL) {
printf("%d->%d; ", i, p->element);
p = p->next;
}
printf("\n");
}
} /*
* insert an edge
*/
void insert_edge(position graph,int from, int to)
{
position np;
position nodeAddr; np = graph + from; nodeAddr = (position) malloc(sizeof(struct node));
nodeAddr->element = to;
nodeAddr->next = np->next;
np->next = nodeAddr;
}

运行结果:

From   1: 1->4; 1->2;
From   2:
From   3: 3->2;
From   4: 4->3; 4->2;

上面的实现主要基于链表,可参考纸上谈兵: 表 (list) 。

总结

图是一种很简单的数据结构。图的组织方式比较松散,自由度比较大,但也造成比较高的算法复杂度。我将在以后介绍一些图的经典算法。

欢迎继续阅读“纸上谈兵: 算法与数据结构”系列

纸上谈兵: 图 (graph)的更多相关文章

  1. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  2. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  3. 算法与数据结构基础 - 图(Graph)

    图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...

  4. 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)

    本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...

  5. echart——关系图graph详解

    VueEchart组件见上一篇 <template> <VueEcharts :options="options" auto-resize /> </ ...

  6. 某种带权有向无环图(graph)的所有路径的求法

    // 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...

  7. 小白学Python(18)——pyecharts 关系图 Graph

    Graph-基本示例 import json import os from pyecharts import options as opts from pyecharts.charts import ...

  8. 【JZOJ6357】小ω的图(graph)

    description analysis 拆位从高位到低位贪心 对于当前位,如果把所有当前位为\(1\)的边塞入,\(1\)和\(n\)连通,则该位必须为\(1\) 这个是因为高位的\(1\)比所有低 ...

  9. 图 Graph

    本文主要内容为:图的定义以及基本术语 图的定义 图 图G的组成:由 数据元素的集合E 和 数据间的关系集合E 组成,记作:G = <V, E> 顶点 (vertex):数据元素,V就是顶点 ...

随机推荐

  1. Unity引擎下最快的Xml读取器:UnityRapidXml

    近期发现无论是系统的System.Xml还是Mono.Xml,其实都有这样或者那样的问题,所以决定自己搞一个快一点的xml parse.以前在C++里用过rapidxml,这个确实是神一般的存在,速度 ...

  2. Kafka vs RocketMQ——单机系统可靠性-转自阿里中间件

    引言 前几期的评测中,我们对比了Kafka和RocketMQ的吞吐量和稳定性,本期我们要引入一个新的评测标准--软件可靠性. 何为"可靠性"? 先看下面这种情况:有A,B两辆越野汽 ...

  3. Python 学习第十六天 html 前端内容总结

    一,css知识总结 1, css属性 css的属性包括以下内容 position:规定元素的定位类型 background:属性在一个声明中设置所有的背景属性 可以设置的如下属性:   (1)back ...

  4. scrapy爬虫结果插入mysql数据库

    1.通过工具创建数据库scrapy

  5. Puppet自动化运维-资源介绍篇(4)

    1.什么是资源? 资源是Puppet最基础的元素,每个资源的定义都具有标题,类型,以及一系列的属性. 资源定义有如下的特性:   (1) Puppet使用title在编译时区分每个资源,使用命名变量在 ...

  6. Objective-C开发编码规范【转载】

    概要 Objective-C是一门面向对象的动态编程语言,主要用于编写iOS和Mac应用程序.关于Objective-C的编码规范,苹果和谷歌都已经有很好的总结: Apple Coding Guide ...

  7. iOS pod install update 慢!!!

    在终端输入: pod install --verbose --no-repo-update pod update --verbose --no-repo-update

  8. ViewPager取消左右滑动切换功能

    ViewPager取消左右滑动切换功能 最近做项目要求某种情况下ViewPager不能滑动,那么我们只需要重写这个方法就可以禁止ViewPager滑动 IndexViewPager.java: imp ...

  9. T-SQL Recipes之Database Backups

    The Problem 在DBA和T-SQL码奴日常工作中,比如常规检查,服务管理,数据库管理, 是其中最具挑战性的一个领域. 在相似任务中,比如索引碎片管理,统计管理,数据库备份是异常重要的,对任何 ...

  10. Mybatis总结

    jdbc.properties driver=com.mysql.jdbc.Driver url=jdbc:mysql://127.0.0.1:3306/testdb username=root pa ...