一、Description

The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest
signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.



ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying
this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and
it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high
even for a relatively small N.



The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour
of the factorial function.



For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1 < N2, then Z(N1) <= Z(N2). It is because
we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.


Input

There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.

Output

For every number N, output a single line containing the single non-negative integer Z(N).

二、题解

       这个题目看了很久还是没看懂,后来发现要求阶乘后的数尾数中0的个数。于是就傻逼的算阶乘,这个根本没法算,数太大了,会发生溢出的。于是就想到要有0就只有1 * 10, 2 * 5而10也可以化成2 * 5,而显然能被5整除的个数远小于能被2整除的个数,于是就计算1~60中能被5整除的个数,后来发现还是不对,结果要比答案少。后来发现,原来25 * 4=100,能增加两个0,而25=5 * 5,能分开来乘。所以,所以在<N的数里面,能分出多少个5来,末尾就多少个0。

       所以应该这样计算:


100/5=20->20/5=4
那么20+4=24
1024/5=204 -> 204/5=40 -> 40/5=8 -> 8/5=1
那么204+40+8+1=253

这里的严谨分析应该是进行质因数分解N ! =(2^x) * (3^y) * (5^z)...,由于10=2*5,所以M只跟x和z有关,每一对2和5相乘可以得到一个10,于是M=min(x,z)。不难看出x大于z,因为能被2整除的数出现的频率能被5整除的数高得多,所以把公式简化为M=z.

       根据上面的分析,只要计算出Z的值,就可以得到N!末尾0的个数了。

三、java代码

import java.util.Scanner;

  public class Main {

	  public static void main(String[] args)  {
Scanner sc = new Scanner(System.in);
int n,m,out;
n=sc.nextInt();
while(n!=0){
m=sc.nextInt();
out=0;
while (m>=5){
m/=5;
out+=m;
}
System.out.println(out);
n--;
}
}
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Poj 1401 Factorial(计算N!尾数0的个数——质因数分解)的更多相关文章

  1. 【CodeChef】Factorial(n!末尾0的个数)

    The most important part of a GSM network is so called Base Transceiver Station (BTS). These transcei ...

  2. POJ 1401 Factorial

    题意:求一个数的阶乘最后边有几个0. 解法:如果有0说明这个数含有2和5这两个因子,对于一个阶乘来说因子2的数量一定比5的数量多,所以只要算有几个5就可以了,依次算5的个数,25的个数,125的个数… ...

  3. n阶乘 尾数0的个数

    class Solution {public: int trailingZeroes(int n) {            if(n<=0) return 0; int i=0;        ...

  4. ACM: POJ 1401 Factorial-数论专题-水题

    POJ 1401 Factorial Time Limit:1500MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

  5. 计算阶乘n!末尾0的个数

    一.问题描述 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数.例如: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= ...

  6. 计算n的阶乘(n!)末尾0的个数

    题目: 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数. 举例: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= 24 ...

  7. 扩展1000!(n!)的尾数零的个数

    #include <stdio.h> #include <malloc.h> //计算1000!尾数零的个数 //扩展n!的尾数零的个数 //2^a * 5^b //obvio ...

  8. POJ 1401:Factorial 求一个数阶乘的末尾0的个数

    Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15137   Accepted: 9349 Descri ...

  9. pku 1401 Factorial 算数基本定理 && 51nod 1003 阶乘后面0的数量

    链接:http://poj.org/problem?id=1401 题意:计算N!的末尾0的个数 思路:算数基本定理 有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数. ...

随机推荐

  1. 九度OJ 1200:最大的两个数 (最值)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2904 解决:761 题目描述: 输入一个四行五列的矩阵,找出每列最大的两个数. 输入: 输入第一行包括一个整数n(1<=n<= ...

  2. 修改maven的war包生成路径

    因为要配合jenkins,所以控制了war包的生成目录: <plugins> <!--打war包到指定的目录下 --> <plugin> <groupId&g ...

  3. Java语言实现简单FTP软件------>连接管理模块的实现:主机与服务器之间的连接与关闭操作(八)

    (1)FTP连接 运行FTP客户端后,首先是连接FTP服务器,需要输入FTP服务器的IP地址及用户名.密码以及端口号后点击连接按钮开始连接FTP服务器,连接流程图如下图所示. 点击"连接&q ...

  4. 《编程导论(Java)&#183;1.1.2 颠倒的世界(柏拉图法则)》

    假设你读<编程导论(Java)·1.1.2 颠倒的世界(柏拉图法则)>感到无趣,请尝试评价这个段子. 3. Classes Classes drive me crazy. That mig ...

  5. angular中按需加载js

    按需加载估计是大家在使用angular之后最想解决的问题吧,因为angular的依赖机制,导致了必须在第一次加载的时候就加载所有js文件,小项目还好,稍大一点的项目如果有上百个js文件,不管是从效率还 ...

  6. 中国移动OneNet平台上传GPS数据JSON格式

    最终目的输出 POST /devices/3225187/datapoints HTTP/1.1 api-key: R9xO5NZm6oVI4YBHvCPKEqtwYtMA Host: api.hec ...

  7. 解压tar包中的指定文件

    解压<a 'tar');"="" href="http://asmboy001.blog.51cto.com/'#\'"" targe ...

  8. 【二】MongoDB入门

    下面是mongodb的一些基本概念: 文档是MongoDB中数据的基本单元,类似关系数据库中的行. 集合,是存储文档的容器,类似关系数据库中的表. MongoDB的单个实例容纳多个数据库,每个数据库都 ...

  9. Python运算和和表达式 学习笔记

    光荣之路Python公开课第二讲 Python运算符和表达式. 一 Python运算符 Python运算符包括 算术运算符,赋值运算符,位运算符,逻辑运算符,身份运算符,成员运算符. 1. 算术运算符 ...

  10. linux FAQ(zz)

    1.Which is the command used to find the available shells in your Operating System Linux ? Ans : $ech ...