Assembly Required

题目描述

Princess Lucy broke her old reading lamp, and needs a new one. The castle orders a shipment of parts from the Slick Lamp Parts Company, which produces interchangable lamp pieces.

There are m types of lamp pieces, and the shipment contained multiple pieces of each type. Making a lamp requires exactly one piece of each type. The princess likes each piece with some value, and she likes a lamp as much as the sum of how much she likes each of the pieces.

You are part of the castle staff, which has gotten fed up with the princess lately. The staff needs to propose k distinct lamp combinations to the princess (two lamp combinations are considered distinct if they differ in at least one piece). They decide to propose the k combinations she will like the least. How much will the princess like the k combinations that the staff proposes?

输入

The first line of input contains a single integer T (1 ≤ T ≤ 10), the number of test cases. The first line of each test case contains two integers m (1 ≤ m ≤ 100), the number of lamp piece types and k (1 ≤ k ≤ 100), the number of lamps combinations to propose. The next m lines each describe the lamp parts of a type;

they begin with ni (2 ≤ ni ≤ 100), the number of pieces of this type, followed by ni integers vi,1 ,... , vi,ni(1 ≤ vi,j ≤ 10,000) which represent how much the princess likes each piece. It is guaranteed that k is no greater than the product of all ni ’s.

输出

For each test case, output a single line containing k integers that represent how much the princess will like the proposed lamp combinations, in nondecreasing order.

样例输入

2
2 2
2 1 2
2 1 3
3 10
4 1 5 3 10
3 2 3 3
5 1 3 4 6 6

样例输出

2 3
4 5 5 6 6 7 7 7 7 7

提示

In the first case, there are four lamp pieces, two of each type. The worst possible lamp has value 1 + 1 = 2,

while the second worst possible lamp has value 2 + 1 = 3.

题意

第一行一个样例数T

第二行 m 和 k

接下来是m行 第一个数字n 表示这行有n个数

要求从每行选一个数 组成一个数

求前k个最小的数

题解

如果一行选一个再比较这样肯定不行啦

既然我们只要前k个最小的

那么只需要把一行的每个数字去加上上一行求出的前k个最小的数,

因为最小值肯定是从这些数里产生

这样每次遍历复杂度最大也才 m <= 100 * n <= 100 * k <= 100 1e6? (瞎算一通

代码

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef pair<int,int> P;
typedef long long ll;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn = 10005;
int n,m,k;
int x;
int cnt,tot,flag;
int ans[maxn];
int pre[maxn];
int main() {
int t;
read(t);
while(t--){
memset(ans,0,sizeof ans); //初始化
memset(pre,0,sizeof pre);
cnt = 1;
read2(m,k);
for(int i = 0; i < m; i++){
for(int j = 0; j < k ; j++){
pre[j] = ans[j] ; //pre[] 记录上一行加完后的前k个数
}
read(n);
tot = 0;
for(int j = 0; j < n; j++){
read(x);
for(int u = 0; u < cnt ; u++){
ans[tot++] = x + pre[u]; // 输入的数加上上一行的前k个数
}
}
sort(ans,ans + tot); //从小到大排序
cnt = min(k,tot); //如果cnt 超过了k 那就按k 来算了
}
for(int i = 0; i < k; i++){ //取前k个输出
printf("%d%c", ans[i], i == k - 1 ? '\n' : ' ');
}
}
}

upc组队赛5 Assembly Required【思维】的更多相关文章

  1. Assembly Required【思维】

    问题 A: Assembly Required 时间限制: 1 Sec  内存限制: 128 MB 提交: 49  解决: 25 [提交] [状态] [命题人:admin] 题目描述 Princess ...

  2. Problem A: Assembly Required K路归并

    Problem A: Assembly Required Princess Lucy broke her old reading lamp, and needs a new one. The cast ...

  3. upc组队赛2 Hakase and Nano【思维博弈】

    Hakase and Nano 题目描述 Hakase and Nano are playing an ancient pebble game (pebble is a kind of rock). ...

  4. upc组队赛6 Canonical Coin Systems【完全背包+贪心】

    Canonical Coin Systems 题目描述 A coin system S is a finite (nonempty) set of distinct positive integers ...

  5. upc组队赛3 Chaarshanbegaan at Cafebazaar

    Chaarshanbegaan at Cafebazaar 题目链接 http://icpc.upc.edu.cn/problem.php?cid=1618&pid=1 题目描述 Chaars ...

  6. upc组队赛3 Iranian ChamPions Cup

    Iranian ChamPions Cup 题目描述 The Iranian ChamPions Cup (ICPC), the most prestigious football league in ...

  7. upc组队赛1 过分的谜题【找规律】

    过分的谜题 题目描述 2060年是云南中医学院的百年校庆,于是学生会的同学们搞了一个连续猜谜活动:共有10个谜题,现在告诉所有人第一个谜题,每个谜题的答案就是下一个谜题的线索....成功破解最后一个谜 ...

  8. upc组队赛1 不存在的泳池【GCD】

    不存在的泳池 题目描述 小w是云南中医学院的同学,有一天他看到了学校的百度百科介绍: 截止到2014年5月,云南中医学院图书馆纸本藏书74.8457万册,纸质期刊388种,馆藏线装古籍图书1.8万册, ...

  9. upc组队赛1 黑暗意志【stl-map】

    黑暗意志 题目描述 在数千年前潘达利亚从卡利姆多分离之时,迷雾笼罩着这块新形成的大陆,使它不被外来者发现.迷雾同样遮蔽着这片大陆古老邪恶的要塞--雷神的雷电王座.在雷神统治时期,他的要塞就是雷电之王力 ...

随机推荐

  1. laravel框架基础知识总结

    一.laravel简介 laravel是一套优雅简介的PHP开发框架,受欢迎程度非常之高,功能强大,工具齐全:以下是本人在学习过程中记录的laravel比较基础的资料,权当学习笔记,请大神们多多指教 ...

  2. 如何保存android app日志

    android 手机日志保存方法如下: 前置条件:已安装adb 1,手机usb连接电脑,打开USB调试模式(注意仅连接一台手机设备) 2,win+R输入cmd打开命令窗口,输入指令:adb devic ...

  3. 【读书笔记】:MIT线性代数(3):Special Solution, Rank and RREF

    Special Solutions: Notice what is special about s 1 and S2. They have ones and zeros in the last two ...

  4. java中封装的使用方法(工具myeclipse)

    封装可以实现属性私有化,将类的属性修饰符由public改为private,如此做者,其他类就无法访问该类中被private修饰的对象,一般我们会使用setter/getter()方法实现对这些对象的访 ...

  5. web.xml中servlet mapping标签

    写了好多小项目后也没弄明白<url-pattern>的真正意义,写跳转的时候也是跳的三心二意的,今天查了一下web.xml的详细配置,看了看servlet-mapping的讲解,豁然开朗, ...

  6. Git SSH连接方式配置

    如果使用ssh的方式管理,需要配置ssh key. 1.打开git bash命令窗口 2.生成ssh key ssh-keygen -t rsa -b 4096 -C "your_email ...

  7. Bellman-Ford&&SPFA算法详解

    Dijkstra在正权图上运行速度很快,但是它不能解决有负权的最短路,如下图: Dijkstra运行的结果是(以1为原点):0 2 12 6 14: 但手算的结果,dist[4]的结果显然是5,为什么 ...

  8. Jquery查找界面Html元素的方法(持续更新)

    1. 根据id来获取:$("#id") 2.根据class来获取:$(".class") 3.根据name来获取:$("[name=??]" ...

  9. oracle client 卸载

    1.停用oracle服务:进入计算机管理,在服务中,找到oracle开头的所有服务,右击选择停止 2.在开始菜单中,找到Universal Installer,运行Oracle Universal I ...

  10. jquery 选项卡切换 带背景图片

    html <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <ti ...