BZOJ原题链接

洛谷原题链接

很明显的差分约束,但数据范围较大,朴素\(SPFA\)判正环求解会\(T\)(理论上如此,但我看到有挺多人用朴素的还跑得挺快。。),所以需要优化。

我们所建立的有向图中所有边的权值只有\(0\)或\(1\),而且若图中有环,那么环上所有边的权值必须为\(0\),否则无解。

所以我们可以用\(tarjan\)找强连通分量并判断每个强连通分量有没有包含权值为\(1\)的边,有则无解。

若有解,就进行缩点,最后得到一张\(DAG\),直接跑\(SPFA\)即可(也可按拓扑序\(DP\),复杂度更低)。

注意有一个数据点是一条长\(10^5\)的链,若\(SPFA\)使用普通数组模拟队列会炸,须用循环队列或\(STL\)。

#include<cstdio>
#include<cstring>
using namespace std;
const int N = 1e5 + 10;
const int M = 4e5 + 10;
int fi[N], di[M], ne[M], cfi[N], cdi[M], cne[M], cda[M], da[M], dfn[N], low[N], st[N], bl[N], nw[N], dis[N], si[N], q[M], l, lc, tp, SCC, ti, k;
bool v[N], p;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
}
inline void add_c(int x, int y, int z)
{
cdi[++lc] = y;
cda[lc] = z;
cne[lc] = cfi[x];
cfi[x] = lc;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
inline bool judge(int x)
{
int i;
for (i = fi[x]; i; i = ne[i])
if (!(bl[di[i]] ^ SCC) && da[i])
return true;
return false;
}
void tarjan(int x)
{
int i, y;
dfn[x] = low[x] = ++ti;
st[++tp] = x;
v[x] = 1;
for (i = fi[x]; i && !p; i = ne[i])
{
y = di[i];
if (!dfn[y])
{
tarjan(y);
low[x] = minn(low[x], low[y]);
}
else
if (v[y])
low[x] = minn(low[x], dfn[y]);
}
if (!(low[x] ^ dfn[x]))
{
SCC++;
k = 0;
do
{
y = st[tp--];
v[y] = 0;
bl[y] = SCC;
nw[++k] = y;
si[SCC]++;
} while (x ^ y);
for (i = 1; i <= k && !p; i++)
if (judge(nw[i]))
p = 1;
}
}
int main()
{
int i, n, m, x, y, z, head = 0, tail = 1;
long long s = 0;
n = re();
m = re();
for (i = 1; i <= m; i++)
{
z = re();
x = re() + 1;
y = re() + 1;
if (!(z ^ 1))
{
add(x, y, 0);
add(y, x, 0);
}
else
if (!(z ^ 2))
add(x, y, 1);
else
if (!(z ^ 3))
add(y, x, 0);
else
if (!(z ^ 4))
add(y, x, 1);
else
add(x, y, 0);
}
for (i = 1; i <= n; i++)
add(1, i + 1, 1);
for (i = 1; i <= n + 1 && !p; i++)
if (!dfn[i])
tarjan(i);
if (p)
{
printf("-1");
return 0;
}
for (z = 1; z <= n + 1; z++)
for (i = fi[z]; i; i = ne[i])
{
y = bl[di[i]];
x = bl[z];
if (x ^ y)
add_c(x, y, da[i]);
}
memset(dis, 250, sizeof(dis));
dis[bl[1]] = 0;
q[1] = bl[1];
while (head ^ tail)
{
x = q[++head];
if (!(head ^ M))
head = 1;
v[x] = 0;
for (i = cfi[x]; i; i = cne[i])
{
y = cdi[i];
if (dis[y] < dis[x] + cda[i])
{
dis[y] = dis[x] + cda[i];
if (!v[y])
{
q[++tail] = y;
if (!(tail ^ M))
tail = 1;
v[y] = 1;
}
}
}
}
for (i = 1; i <= SCC; i++)
if (i ^ bl[1])
s += 1LL * si[i] * dis[i];
printf("%lld", s);
return 0;
}

BZOJ2330或洛谷3275 [SCOI2011]糖果的更多相关文章

  1. 洛谷 3275 [SCOI2011]糖果

    题目戳这里 N句话题意 有N个人,k个限制,有五种限制 如果X=1, 表示第A个小朋友的糖果必须和第B个小朋友的糖果一样多: 如果X=2, 表示第A个小朋友的糖果必须少于第B个小朋友的糖果: 如果X= ...

  2. 洛谷P3275 [SCOI2011]糖果(差分约束,最长路,Tarjan,拓扑排序)

    洛谷题目传送门 差分约束模板题,等于双向连0边,小于等于单向连0边,小于单向连1边,我太蒻了,总喜欢正边权跑最长路...... 看遍了讨论版,我是真的不敢再入复杂度有点超级伪的SPFA的坑了 为了保证 ...

  3. 洛谷——P3275 [SCOI2011]糖果

    P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...

  4. 【POJ 3159】Candies&&洛谷P3275 [SCOI2011]糖果

    来补一下自己很久以前那个很蒟蒻很蒟蒻的自己没有学懂的知识 差分约束,说白了就是利用我们在求最短路的一个\(relax\)操作时的判断的原理 \[dis[v]>dis[u]+disj(u,v)\] ...

  5. 题解——洛谷P3275 [SCOI2011]糖果

    一道条件非常多的差分约束 把\( a < b \)转化为\( a-b \le -1\)就可做了 \( a>b \)的情况同理 若有负环则无解输出-1 注意本题中要求每个人都有糖果 所以假设 ...

  6. 洛谷P3275 [SCOI2011]糖果 [差分约束系统]

    题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...

  7. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  8. 洛谷P3275 [SCOI2011]糖果

    差分约束大坑题 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  9. 洛谷 P3275 [SCOI2011]糖果

    题目链接 题解 差分约束 学过的应该都会做 不会的自行百度,这里不多讲 opt=1 连一条长度为0的双向边 opt=2 (u->v) \(len=-1\) opt=3 (v->u) \(l ...

随机推荐

  1. SPSS-因子分析

    因子分析 有可能用较少的综合指标分析存在于各变量中的各类信息,而各综合指标之间彼此是不相关的,代表各类信息的综合指标称为因子.定义:因子分析就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个 ...

  2. 税控服务器 TC5002UpdatePackage 安装更新

    Linux版税控服务器单税号版本税控应用:   TC5002UpdatePackage2008160711.zip         单税号服务器(型号:TCG-01S1) Linux版税控服务器20个 ...

  3. vue --轮播图

    轮播图,可以使用mint-ui中的swipe HTML: <Swipe :auto="4000"> <SwipeItem v-for="item in ...

  4. Bootstrap 轮播

    [Bootstrap 轮播] 1.要设置一个轮播界面,需要注意以下几点: 1)根div 必须为 class="carousel slide" 2)根div下含有三块子div a)& ...

  5. nodejs windows安装

    [安装步骤] 一.安装node.js 1.前往node.js官网下载(我下载的是v10.8.0)并安装工具,这里安装路径选到D盘,e:\Program Files\nodejs 安装完毕在命令行输入以 ...

  6. js 字符与ascii码转换

    参考 http://www.jb51.net/article/43534.htm ' '.charCodeAt();  //字符转ascii String.fromCharCode(10);  //a ...

  7. 数据库表字段,DEFAULT NULL与NOT NULL DEFAULT

    为什么要把字段设置成not null 呢? 1.空值是不占用空间的 2.mysql中的NULL其实是占用空间的,下面是来自于MYSQL官方的解释 “NULL columns require addit ...

  8. js navigator对象

    原文:https://www.cnblogs.com/huyihao/p/6003110.html Navigator 对象包含有关浏览器的信息. 很多时候我们需要在判断网页所处的浏览器和平台,Nav ...

  9. [1.16更新B14特征处理]津南数字制造题目解读及部分思路~~有趣的特征

    [1.16更新B14特征处理]津南数字制造题目解读及部分思路--有趣的特征 Article onion啦啦啦 2019-01-17 16:03:38 11 1790 11 首先声明,我并不能保证这些特 ...

  10. TOJ4413: IP address

    传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=4413 时间限制(普通/Java): ...