Dependency

依赖, 用于表示RDD之间的因果关系, 一个dependency表示一个parent rdd, 所以在RDD中使用Seq[Dependency[_]]来表示所有的依赖关系


Dependency的base class
可见Dependency唯一的成员就是rdd, 即所依赖的rdd, 或parent rdd

/**
* Base class for dependencies.
*/
abstract class Dependency[T](val rdd: RDD[T]) extends Serializable

Dependency分为两种, narrow和shuffle

NarrowDependency

先看看比较简单的narrow

定义, parent RDD中的每个partition最多被child RDD中的一个partition使用, 即不需要shuffle

更直白点, 就是Narrow只有map, partition本身范围不会改变, 一个parititon经过transform还是一个partition, 虽然内容发生了变化, 所以可以在local完成

而wide就是, partition需要打乱从新划分, 存在shuffle的过程, partition的数目和范围都发生了变化

唯一的接口getParents, 即给定任一个partition-id, 得到所有依赖的parent partitions的id的seq

/**
* Base class for dependencies where each partition of the parent RDD is used by at most one
* partition of the child RDD. Narrow dependencies allow for pipelined execution.
*/
abstract class NarrowDependency[T](rdd: RDD[T]) extends Dependency(rdd) {
/**
* Get the parent partitions for a child partition.
* @param partitionId a partition of the child RDD
* @return the partitions of the parent RDD that the child partition depends upon
*/
def getParents(partitionId: Int): Seq[Int]
}

NarrowDependency又分为两种,

OneToOneDependency

最简单的依赖关系, 即parent和child里面的partitions是一一对应的, 典型的操作就是map, filter…

其实partitionId就是partition在RDD中的序号, 所以如果是一一对应, 那么parent和child中的partition的序号应该是一样的

/**
* Represents a one-to-one dependency between partitions of the parent and child RDDs.
*/
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {
override def getParents(partitionId: Int) = List(partitionId) //序号一致
}

 

RangeDependency

虽然仍然是一一对应, 但是是parent RDD中的某个区间的partitions对应到child RDD中的某个区间的partitions

典型的操作是union, 多个parent RDD合并到一个child RDD, 故每个parent RDD都对应到child RDD中的一个区间

需要注意的是, 这里的union不会把多个partition合并成一个partition, 而是的简单的把多个RDD中的partitions放到一个RDD里面, partition不会发生变化, 可以参考Spark 源码分析 – RDD 中UnionRDD的实现

由于是range, 所以直接记录起点和length就可以了, 没有必要加入每个中间rdd, 所以RangeDependency优化了空间效率

/**
* Represents a one-to-one dependency between ranges of partitions in the parent and child RDDs.
* @param rdd the parent RDD
* @param inStart the start of the range in the parent RDD, parent RDD中区间的起始点
* @param outStart the start of the range in the child RDD, child RDD中区间的起始点
* @param length the length of the range
*/
class RangeDependency[T](rdd: RDD[T], inStart: Int, outStart: Int, length: Int)
extends NarrowDependency[T](rdd) { override def getParents(partitionId: Int) = {
if (partitionId >= outStart && partitionId < outStart + length) { //判断partitionId的合理性,必须在child RDD的合理partition范围内
List(partitionId - outStart + inStart) //算出parent RDD中对应的partition id
} else {
Nil
}
}
}

 

WideDependency

WideDependency, 也称为ShuffleDependency

首先需要基于PairRDD, 因为一般需要依据key进行shuffle, 所以数据结构往往是kv

即RDD中的数据是kv pair, [_ <: Product2[K, V]],

trait Product2[+T1, +T2] extends Product  // Product2 is a cartesian product of 2 components

Product2是trait, 这里实现了Product2可以用于表示kv pair? 不是很理解

其次, 由于需要shuffle, 所以当然需要给出partitioner, 如何完成shuffle

然后, shuffle不象map可以在local进行, 往往需要网络传输或存储, 所以需要serializerClass

最后, 每个shuffle需要分配一个全局的id, context.newShuffleId()的实现就是把全局id累加

 

/**
* Represents a dependency on the output of a shuffle stage.
* @param rdd the parent RDD
* @param partitioner partitioner used to partition the shuffle output
* @param serializerClass class name of the serializer to use
*/
class ShuffleDependency[K, V](
@transient rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializerClass: String = null)
extends Dependency(rdd.asInstanceOf[RDD[Product2[K, V]]]) { val shuffleId: Int = rdd.context.newShuffleId()
}

Spark源码分析 – Dependency的更多相关文章

  1. Spark源码分析 – 汇总索引

    http://jerryshao.me/categories.html#architecture-ref http://blog.csdn.net/pelick/article/details/172 ...

  2. Spark源码分析 – SparkContext

    Spark源码分析之-scheduler模块 这位写的非常好, 让我对Spark的源码分析, 变的轻松了许多 这里自己再梳理一遍 先看一个简单的spark操作, val sc = new SparkC ...

  3. Spark源码分析之七:Task运行(一)

    在Task调度相关的两篇文章<Spark源码分析之五:Task调度(一)>与<Spark源码分析之六:Task调度(二)>中,我们大致了解了Task调度相关的主要逻辑,并且在T ...

  4. Spark源码分析之五:Task调度(一)

    在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的 ...

  5. Spark源码分析之三:Stage划分

    继上篇<Spark源码分析之Job的调度模型与运行反馈>之后,我们继续来看第二阶段--Stage划分. Stage划分的大体流程如下图所示: 前面提到,对于JobSubmitted事件,我 ...

  6. Spark源码分析之二:Job的调度模型与运行反馈

    在<Spark源码分析之Job提交运行总流程概述>一文中,我们提到了,Job提交与运行的第一阶段Stage划分与提交,可以分为三个阶段: 1.Job的调度模型与运行反馈: 2.Stage划 ...

  7. spark 源码分析之十九 -- DAG的生成和Stage的划分

    上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RD ...

  8. spark源码分析以及优化

    第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和O ...

  9. Spark源码分析(三)-TaskScheduler创建

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3879151.html 在SparkContext创建过程中会调用createTaskScheduler函 ...

随机推荐

  1. SSH 限制

    SSH 限制 限制 SSH 连接 通过使用用户.组和拒绝/允许条目限制 SSH 用户连接您的主机.还可以针对各个主机使用 TCP Wrappers. 评论 David Tansley, 系统管理员, ...

  2. am335x 打开内部 RTC

    AM335X 打开内部 RTC 过程记录. kernel version: 3.2.0 先在 make menuconfig 里面打开内部RTC的配置: make menuconfig Device ...

  3. EAGAIN、EWOULDBLOCK、EINTR与非阻塞 长连接

    EAGAIN.EWOULDBLOCK.EINTR与非阻塞 长连接 EWOULDBLOCK用于非阻塞模式,不需要重新读或者写 EINTR指操作被中断唤醒,需要重新读/写 在Linux环境下开发经常会碰到 ...

  4. Android——UI事件的处理机制(基于监听器)

    1.普通内部类(常用) xml <Button android:hint="reset" android:layout_columnWeight="1" ...

  5. Android——onCreate( )方法详解(转)

    android开发之onCreate( )方法详解 onCreate( )方法是android应用程序中最常见的方法之一,那么,我们在使用onCreate()方法的时候应该注意哪些问题呢? 先看看Go ...

  6. 07 Test结构

    Test 有多种实现方式, [ 等价于 test, 并且 [ 是一个内建命令, 效率很高 另外, [[]] 也是测试, [[]]结构比bash[]更灵活, 这是一个扩展test命令, 从ksh88继承 ...

  7. javascript 屏蔽F5,BackSpace等各种按键

    function DisableF5(){ with (event){ // F5 and Ctrl+R if (keyCode==116 || (ctrlKey && keyCode ...

  8. Android 性能测试之TraceView的使用

    Traceview是android平台配备一个很好的性能分析的工具.它可以通过图形化的方式让我们了解我们要跟踪的程序的性能,并且能具体到method. 在SDK路径\tools目录下. 1.在开始使用 ...

  9. spark 系列文章汇总

    源码导读 spark 源码导读1 从spark启动脚本开始 spark 源码导读2 进一步窥探Master.Worker启动及通信机制 spark 源码导读3 进一步理解脚本调用关系 spark 源码 ...

  10. [转载]Jenkins持续集成项目搭建与实践——基于Python Selenium自动化测试 -2

    自己的代码 import unittest # import HTMLTestRunner_cn as HTMLTestRunner import xmlrunner import sys sys.p ...