定义数列:

$\left\{\begin{eqnarray*} F_1 &=& A \\ F_2 &=& B \\ F_n &=& C\cdot{}F_{n-2}+D\cdot{}F_{n-1}+\left\lfloor\frac{P}{n}\right\rfloor \end{eqnarray*}\right.$

求该数列的第n项。

很明显的整除分块问题,把$\left\lfloor\frac{P}{n}\right\rfloor$相同n的分为一组进行矩阵快速幂即可。复杂度$O(3^3\sqrt nlogn)$

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+,mod=1e9+;
int n,A,B,C,D,P;
struct Mat {
int a[][],n;
Mat() {memset(a,,sizeof a),n=;}
int* operator[](int x) {return a[x];}
Mat operator+(Mat b) {
Mat c;
for(int i=; i<n; ++i)
for(int j=; j<n; ++j)
c[i][j]=(a[i][j]+b[i][j])%mod;
return c;
}
Mat operator*(Mat b) {
Mat c;
for(int i=; i<n; ++i)
for(int j=; j<n; ++j)
for(int k=; k<n; ++k)
c[i][j]=(c[i][j]+(ll)a[i][k]*b[k][j])%mod;
return c;
}
};
Mat Pow(Mat x,int p) {
Mat ret;
for(int i=; i<ret.n; ++i)ret[i][i]=;
for(; p; p>>=,x=x*x)if(p&)ret=ret*x;
return ret;
}
int solve() {
if(n==)return A;
Mat t;
for(int i=; i<t.n; ++i)t[i][i]=;
for(int l=,r,k; l<=n; l=r+) {
k=P/l,r=k&&P/k<n?P/k:n;
Mat x;
x[][]=D;
x[][]=C;
x[][]=k;
x[][]=;
x[][]=;
x=Pow(x,r-l+);
t=x*t;
}
return ((ll)t[][]*B%mod+(ll)t[][]*A%mod+t[][])%mod;
}
int main() {
int T;
for(scanf("%d",&T); T--;) {
scanf("%d%d%d%d%d%d",&A,&B,&C,&D,&P,&n);
printf("%d\n",solve());
}
return ;
}

HDU - 6395 Sequence (整除分块+矩阵快速幂)的更多相关文章

  1. HDU 6395 Sequence(分段矩阵快速幂)题解

    题意: 已知\(A,B,C,D,P,n\)以及 \[\left\{ \begin{aligned} & F_1 = A \\ & F_2 = B\\ & F_n = C*F_{ ...

  2. 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)

    Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...

  3. hdu 5667 BestCoder Round #80 矩阵快速幂

    Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536 ...

  4. HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  5. [hdu-6395]Sequence 分块+矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6395 因为题目数据范围太大,又存在递推关系,用矩阵快速幂来加快递推. 每一项递推时  加的下取整的数随 ...

  6. poj2778DNA Sequence (AC自动机+矩阵快速幂)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud DNA Sequence Time Limit: 1000MS   Memory ...

  7. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

  8. HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...

  9. HDU - 4990 Reading comprehension 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...

随机推荐

  1. linux下杀进程的方法

    http://www.linuxidc.com/Linux/2011-08/40052.htm kill -s 9 2222

  2. elastic全文检索框架

    什么是ElasticSearch? 1.Elasticsearch是一个基于Lucene的搜索引擎.它提供了具有HTTPWeb界面和无架构JSON文档的分布式,多租户能力的全文搜索引擎.Elastic ...

  3. HCL试验七

    在静态路由的基础上实行动态路由 对每台路由器的直连ip编写动态路由命令 路由器1 rip 1 network 192.168.1.0 network 10.1.1.0 undo summary und ...

  4. 【Python开发】python PIL读取图像转换为灰度图及另存为其它格式(也可批量改格式)

    例如有一幅图,文件名为"a.jpg'.  读取: from PIL import Image #或直接import Image im = Image.open('a.jpg') 将图片转换成 ...

  5. 时间转换:DateTimeExtensions

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. vue-teach

    编译器的工作过程 http://www.ruanyifeng.com/blog/2014/11/compiler.html DNS 原理入门 http://www.ruanyifeng.com/blo ...

  7. 浅谈Linux du命令

    **du(disk usage),顾名思义,查看目录/文件占用空间大小** 1.查看当前目录下的所有目录以及子目录的大小  du -h du -ah #-h:用K.M.G的人性化形式显示#-a:显示目 ...

  8. Fiddle-常用设置和操作记录

    1.导出证书: 2.清空屏幕: 3.字段认识 4.保存会话: 5.解码

  9. Python3学习笔记-更新中

    1.Python概况 2.Anaconda安装及使用 3.Pycharm安装及使用 4.Hello World!!! 5.数据类型及类型转换 6.分支结构 7.循环语句 8.异常

  10. org.apache.shiro.realm.AuthorizingRealm - No cache or cacheManager properties have been set. Authorization cache cannot be obtained.

    项目中用spring shiro来处理权限的问题,但是启动的时候会打印如下日志 org.apache.shiro.realm.AuthorizingRealm - No cache or cacheM ...