RMQ 算法入门
1. 概述
RMQ(Range Minimum/Maximum Query)。即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。
这两个问题是在实际应用中常常遇到的问题。以下介绍一下解决这两种问题的比較高效的算法。当然,该问题也能够用线段树(也叫区间树)解决,算法复杂度为:O(N)~O(logN),这里我们暂不介绍。
2.RMQ算法
对于该问题,最easy想到的解决方式是遍历,复杂度是O(n)。但当数据量非常大且查询非常频繁时。该算法无法在有效的时间内查询出正解。
本节介绍了一种比較高效的在线算法(ST算法)解决问题。所谓在线算法,是指用户每输入一个查询便立即处理一个查询。该算法一般用较长的时间做预处理。待信息充足以后便能够用较少的时间回答每一个查询。ST(Sparse Table)算法是一个很有名的在线处理RMQ问题的算法。它能够在O(nlogn)时间内进行预处理。然后在O(1)时间内回答每一个查询。
(一)首先是预处理,用动态规划(DP)解决。
设A[i]是要求区间最值的数列。F[i, j]表示从第i个数起连续2^j个数中的最大值。(DP的状态)
比如:
A数列为:3 2 4 5 6 8 1 2 9 7
F[1,0]表示第1个数起,长度为2^0=1的最大值,事实上就是3这个数。
同理 F[1,1] = max(3,2) = 3, F[1,2]=max(3,2,4,5) = 5,F[1,3] = max(3,2,4,5,6,8,1,2) = 8;
而且我们能够easy的看出F[i,0]就等于A[i]。(DP的初始值)
这样。DP的状态、初值都已经有了,剩下的就是状态转移方程。
我们把F[i。j]平均分成两段(由于f[i,j]一定是偶数个数字)。从 i 到i + 2 ^ (j - 1) - 1为一段。i + 2 ^ (j - 1)到i + 2 ^ j - 1为一段(长度都为2 ^ (j - 1))。
用上例说明,当i=1。j=3时就是3,2,4,5 和 6,8,1,2这两段。
F[i,j]就是这两段各自最大值中的最大值。于是我们得到了状态转移方程F[i, j]=max(F[i,j-1],
F[i + 2^(j-1),j-1])。
代码例如以下:
void RMQ(int num) //预处理->O(nlogn)
{
for(int j = 1; j < 20; ++j)
for(int i = 1; i <= num; ++i)
if(i + (1 << j) - 1 <= num)
{
maxsum[i][j] = max(maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1]);
minsum[i][j] = min(minsum[i][j - 1], minsum[i + (1 << (j - 1))][j - 1]);
}
}
这里我们须要注意的是循环的顺序。我们发现外层是j,内层所i,这是为什么呢?能够是i在外,j在内吗?
答案是不能够。由于我们须要理解这个状态转移方程的意义。
状态转移方程的含义是:先更新全部长度为F[i,0]即1个元素,然后通过2个1个元素的最值,获得全部长度为F[i,1]即2个元素的最值,然后再通过2个2个元素的最值。获得全部长度为F[i,2]即4个元素的最值,以此类推更新全部长度的最值。
而假设是i在外,j在内的话,我们更新的顺序就是F[1,0],F[1,1],F[1,2],F[1,3],表示更新从1開始1个元素。2个元素,4个元素,8个元素(A[0],A[1],....A[7])的最值。这里F[1,3] = max(max(A[0],A[1],A[2],A[3]),max(A[4],A[5],A[6],A[7]))的值。可是我们根本没有计算max(A[0],A[1],A[2],A[3])和max(A[4],A[5],A[6],A[7]),所以这个方案肯定是错误的。
为了避免这种错误,一定要好好理解这个状态转移方程所代表的含义。
(二)然后是查询。
假如我们须要查询的区间为(i,j),那么我们须要找到覆盖这个闭区间(左边界取i。右边界取j)的最小幂(能够反复。比方查询5,6。7,8,9,我们能够查询5678和6789)。
由于这个区间的长度为j - i + 1,所以我们能够取k=log2( j - i + 1)。则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}。
举例说明。要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2])。
在这里我们也须要注意一个地方。就是<<运算符和+-运算符的优先级。
比方这个表达式:5 - 1 << 2是多少?
答案是:4 * 2 * 2 = 16。
所以我们要写成5 - (1 << 2)才是5-1 * 2 * 2 = 1。
RMQ 算法入门的更多相关文章
- 线段树:CDOJ1591-An easy problem A (RMQ算法和最简单的线段树模板)
An easy problem A Time Limit: 1000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...
- 【转】 SVM算法入门
课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Supp ...
- 三角函数计算,Cordic 算法入门
[-] 三角函数计算Cordic 算法入门 从二分查找法说起 减少乘法运算 消除乘法运算 三角函数计算,Cordic 算法入门 三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来 ...
- 循环冗余校验(CRC)算法入门引导
目录 写给嵌入式程序员的循环冗余校验CRC算法入门引导 前言 从奇偶校验说起 累加和校验 初识 CRC 算法 CRC算法的编程实现 前言 CRC校验(循环冗余校验)是数据通讯中最常采用的校验方式.在嵌 ...
- 【算法入门】广度/宽度优先搜索(BFS)
广度/宽度优先搜索(BFS) [算法入门] 1.前言 广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广度来描述)是连通图的一种遍历策略.因为它的思想是从一个顶点V0开始,辐射状地优先遍历其周围较 ...
- RMQ算法讲解
RMQ算法 引入: 例1.题目描述 输入N个数和M次询问,每次询问一个区间[L,R],求第L个数到R个数之间的最大值. 第一种方法:大暴力之术. 但是……时间复杂度最坏会达到 $O(NM)$,一半 ...
- (转)三角函数计算,Cordic 算法入门
由于最近要使用atan2函数,但是时间上消耗比较多,因而网上搜了一下简化的算法. 原帖地址:http://blog.csdn.net/liyuanbhu/article/details/8458769 ...
- 【转】循环冗余校验(CRC)算法入门引导
原文地址:循环冗余校验(CRC)算法入门引导 参考地址:https://en.wikipedia.org/wiki/Computation_of_cyclic_redundancy_checks#Re ...
- LDA算法入门
http://blog.csdn.net/warmyellow/article/details/5454943 LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discrimin ...
随机推荐
- Poj3580 Super Memo(FHQ-Treap)
题面 题解 对于操作$1$,我们可以对于每个节点打一个$add$标记,下放就行了 对于操作2,可以参考这篇题解的上一篇,不赘述 对于操作4,可以将区间裂成两部分,然后再插入合并 对于操作5,可以将区间 ...
- PMP的六大管理学定律
★墨菲定律PMP考试六大管理学定律之1-PMP专业辅导 1.什么是墨菲定律?最简单的表达形式是“有可能出错的事情,就会出错(Anything that can go wrong will go wro ...
- codevs1033 蚯蚓的游戏问题 裸最小费用最大流,注意要拆点
因为蚯蚓走过的路径不能重合,所以把每个点拆成两个点,容量赋为1,保证不会走过相同的点,再加超级源点(程序中为1)和一个辅助点(程序中为2)容量赋为k来控制蚯蚓的数量,最后汇集到一个超级汇点上.做一遍最 ...
- 【模拟】Flo's Restaurant
[poj2424]Flo's Restaurant Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2960 Accept ...
- 【二分】Codeforces Round #435 (Div. 2) D. Mahmoud and Ehab and the binary string
题意:交互题:存在一个至少有一个0和一个1的长度为n的二进制串,你可以进行最多15次询问,每次给出一个长度为n的二进制串,系统返回你此串和原串的海明距离(两串不同的位数).最后要你找到任意一个0的位置 ...
- 【枚举】【最小表示法】XVII Open Cup named after E.V. Pankratiev Stage 14, Grand Prix of Tatarstan, Sunday, April 2, 2017 Problem F. Matrix Game
给你一个n*m的字符矩阵,将横向(或纵向)全部裂开,然后以任意顺序首尾相接,然后再从中间任意位置切开,问你能构成的字典序最大的字符串. 以横向切开为例,纵向类似. 将所有横排从大到小排序,枚举最后切开 ...
- 【递推】【组合计数】UVA - 11401 - Triangle Counting
http://blog.csdn.net/highacm/article/details/8629173 题目大意:计算从1,2,3,...,n中选出3个不同的整数,使得以它们为边长可以构成三角形的个 ...
- 【贪心】POJ1328-Radar Installation
[思路] 以每一座岛屿为圆心,雷达范围为半径作圆,记录下与x轴的左右交点.如果与x轴没交点,则直接退出输出“-1”.以左交点为关键字进行排序,从左到右进行贪心.容易知道,离每一个雷达最远的那一座岛与雷 ...
- bzoj 3728: PA2014Final Zarowki
3728: PA2014Final Zarowki Description 有n个房间和n盏灯,你需要在每个房间里放入一盏灯.每盏灯都有一定功率,每间房间都需要不少于一定功率的灯泡才可以完全照亮.你可 ...
- Nginx配置自签名的SSL证书(转载)
要保证Web浏览器到服务器的安全连接,HTTPS几乎是唯一选择.HTTPS其实就是HTTP over SSL,也就是让HTTP连接建立在SSL安全连接之上. SSL使用证书来创建安全连接.有两种验证模 ...