给定同余式,求它在内的所有解,其中总是素数。

分析:解本同余式的步骤如下

(1)求模的一个原根

(2)利用Baby Step Giant Step求出一个,使得,因为为素数,所以有唯一解。

(3)设,这样就有,其中,那么得到

(4)求出所有的,可以知道一共有个解,我们求出所有的,然后排个序即可。

  O(sqrt(n))的时间复杂度

  BSGS如下(前向星版本)

  

const maxn=;

type node=record
data,next,id:longint;
end; type LL=int64; var edge:array [..maxn] of node;
head:array [..maxn] of longint;
cnt:longint;
a,b,c:ll; procedure insert(data,id:longint);
var i,k:longint;
begin
k:=data mod maxn;
i:=head[k];
while i<>- do
begin
if edge[i].data=data then exit;
edge[cnt].data:=data;
edge[cnt].id:=id;
edge[cnt].next:=head[k];
head[k]:=cnt;
inc(cnt);
i:=edge[i].next;
end;
end; function find(data:ll):longint;
var i,k:longint;
begin
k:=data mod maxn;
i:=head[k];
while i<>- do
begin
if edge[i].data=data then exit(edge[i].id);
i:=edge[i].next;
end;
exit(-);
end; procedure extend_gcd(a,b:ll;var x,y:ll);
var t:ll;
begin
if b= then
begin
x:=;
y:=;
exit;
end;
extend_gcd(b,a mod b,x,y);
t:=x;
x:=y;
y:=t-(a div b)*y;
end; function gcd(x,y:ll):ll;
begin
if x mod y= then exit(y)
else exit(gcd(y,x mod y));
end; function modd(x,p:ll):ll;
begin
if x>=p then exit(x mod p);
if x< then exit((x mod p+p) mod p);
exit(x);
end; function quick_mod(a,n,p:ll):ll;
var ans,t:ll;
begin
ans:=; t:=modd(a,p);
while n<> do
begin
if (n and )= then ans:=modd(ans*t,c);
n:=n>>;
t:=modd(t*t,c);
end;
exit(ans);
end; function bsgs(a,b,c:ll):ll;
var x,y,k,t,d,len,m:ll; i:longint;
begin
fillchar(head,sizeof(head),$ff);
cnt:=;
b:=modd(b,c);
for i:= to do
begin
if b=t then exit(i);
t:=modd(t*a,c);
end;
d:=; len:=;
while true do
begin
t:=gcd(a,c);
if t= then break;
if (b mod t)<> then exit(-);
c:=c div t;
b:=b div t;
d:=modd(d*a div t,c);
inc(len);
end;
m:=trunc(sqrt(c));
t:=;
for i:= to m do
begin
insert(t,i);
t:=modd(t*a,c);
end;
k:=quick_mod(a,m,c);
for i:= to m do
begin
extend_gcd(d,c,x,y);
t:=modd(b*x,c);
if (y=find(t)) and (y<>-) then exit(i*m+y+len);
d:=modd(d*k,c);
end;
exit(-);
end; begin
readln(a,b,c);
writeln(bsgs(a,b,c));
end.

Baby Step Gaint Step的更多相关文章

  1. BSGS算法 (小步大步 Baby Step Gaint Step)

    当你要求满足: $$ A^x \equiv B \ (\bmod \ P) $$ 的最小非负整数 x (gcd(A,P)==1)就可以用到 BSGS 了 设 $ m=\sqrt{P} $ 向上取整 处 ...

  2. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  3. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  4. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  5. 【POJ2417】baby step giant step

    最近在学习数论,然而发现之前学的baby step giant step又忘了,于是去翻了翻以前的代码,又复习了一下. 觉得总是忘记是因为没有彻底理解啊. 注意baby step giant step ...

  6. [置顶] hdu2815 扩展Baby step,Giant step入门

    题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...

  7. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  8. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  9. HDU 2815 扩展baby step giant step 算法

    题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...

随机推荐

  1. 转场动画2-Pop动画

    上一篇试讲push动画,这篇分解pop动画 里面关于矩阵有不懂得,参考CATransform3D 特效详解 上图(虚拟机下,图是渣渣 ) 代码直接上 // // PopTransition.h // ...

  2. c# json处理(转)

    一.C#处理简单json数据 json数据:{"result":"0","res_info":"ok","qu ...

  3. poj 3469 Dual Core CPU 最小割

    题目链接 好裸的题....... 两个cpu分别作为源点和汇点, 每个cpu向元件连边, 权值为题目所给的两个值, 如果两个元件之间有关系, 就在这两个元件之间连边, 权值为消耗,这里的边应该是双向边 ...

  4. Multiwii 代码解读

    GPS部分 GPS_angle[ROLL]   = (nav[LON]*cos_yaw_x - nav[LAT]*sin_yaw_y) /10;GPS_angle[PITCH]  = (nav[LON ...

  5. clear:both后margin-top不起作用

    如: <div style="float:left;">float:left</div> <div style="clear:both;ma ...

  6. elk 日志处理的一点思路

    zjtest7-frontend:/usr/local/logstash-2.3.4/bin# ./logstash -f ../config/logstash_agent.conf zjtest7- ...

  7. openStack openSource CloudComputing

    <一,> ,OpenStack a few Core Compontents integration with openStack-keystone Identity service1.1 ...

  8. [置顶] 内存映射失败MapViewOfFile 失败 返回 8

    问题描述1 在使用内存映射方式读写数据时,将文件A的内容拷贝至文件B中,偶尔会出来文件拷贝后的文件,内容为空,或部分为空 问题分析1 怀疑是内存映射方式读写数据的稳定性(可笑的怀疑,内存映射可以Win ...

  9. BootStrap 智能表单系列 五 表单依赖插件处理

    这一章比较简单哦,主要就是生产表单元素后的一些后续处理操作,比如日期插件的渲染.一些autocomplete的处理等,在回调里面处理就可以了, demo: $("input.date-pic ...

  10. DevExpress ASP.NET 使用经验谈(5)-通过ASPxGridView实现CRUD操作

    这节,我们将通过使用DevExpress的ASPxGridView控件,实现对数据的CRUD操作. 首先,我们在解决方案中,添加一个网站: 图一 添加新网站 图二 添加DevExpress.Data. ...