【深度学习系列】PaddlePaddle之数据预处理
上篇文章讲了卷积神经网络的基本知识,本来这篇文章准备继续深入讲CNN的相关知识和手写CNN,但是有很多同学跟我发邮件或私信问我关于PaddlePaddle如何读取数据、做数据预处理相关的内容。网上看的很多教程都是几个常见的例子,数据集不需要自己准备,所以不需要关心,但是实际做项目的时候做数据预处理感觉一头雾水,所以我就写一篇文章汇总一下,讲讲如何用PaddlePaddle做数据预处理。
PaddlePaddle的基本数据格式
根据官网的资料,总结出PaddlePaddle支持多种不同的数据格式,包括四种数据类型和三种序列格式:
四种数据类型:
- dense_vector:稠密的浮点数向量。
- sparse_binary_vector:稀疏的二值向量,即大部分值为0,但有值的地方必须为1。
- sparse_float_vector:稀疏的向量,即大部分值为0,但有值的部分可以是任何浮点数。
- integer:整型格式
api如下:
paddle.v2.data_type.
dense_vector
(dim, seq_type=0)
- 说明:稠密向量,输入特征是一个稠密的浮点向量。举个例子,手写数字识别里的输入图片是28*28的像素,Paddle的神经网络的输入应该是一个784维的稠密向量。
- 参数:
- dim(int) 向量维度
- seq_type(int)输入的序列格式
- 返回类型:InputType
paddle.v2.data_type.
sparse_binary_vector
(dim, seq_type=0)
- 说明:稀疏的二值向量。输入特征是一个稀疏向量,这个向量的每个元素要么是0,要么是1
- 参数:同上
- 返回类型:同上
paddle.v2.data_type.
sparse_vector
(dim, seq_type=0)
- 说明:稀疏向量,向量里大多数元素是0,其他的值可以是任意的浮点值
- 参数:同上
- 返回类型:同上
paddle.v2.data_type.
integer_value
(value_range, seq_type=0)
- 说明:整型格式
- 参数:
- seq_type(int):输入的序列格式
- value_range(int):每个元素的范围
- 返回类型:InputType
三种序列格式:
- SequenceType.NO_SEQUENCE:不是一条序列
- SequenceType.SEQUENCE:是一条时间序列
- SequenceType.SUB_SEQUENCE: 是一条时间序列,且序列的每一个元素还是一个时间序列。
api如下:
paddle.v2.data_type.dense_vector_sequence
(dim, seq_type=0)
- 说明:稠密向量的序列格式
- 参数:dim(int):稠密向量的维度
- 返回类型:InputType
paddle.v2.data_type.sparse_binary_vector_sequence
(dim, seq_type=0)
- 说明:稀疏的二值向量序列。每个序列里的元素要么是0要么是1
- 参数:dim(int):稀疏向量的维度
- 返回类型:InputType
paddle.v2.data_type.sparse_non_value_slot
(dim, seq_type=0)
- 说明:稀疏的向量序列。每个序列里的元素要么是0要么是1
- 参数:
- dim(int):稀疏向量的维度
- seq_type(int):输入的序列格式
- 返回类型:InputType
paddle.v2.data_type.sparse_value_slot
(dim, seq_type=0)
- 说明:稀疏的向量序列,向量里大多数元素是0,其他的值可以是任意的浮点值
- 参数:
- dim(int):稀疏向量的维度
- seq_type(int):输入的序列格式
- 返回类型:InputType
paddle.v2.data_type.integer_value_sequence
(value_range, seq_type=0)
- 说明:value_range(int):每个元素的范围
不同的数据类型和序列模式返回的格式不同,如下表:
其中f表示浮点数,i表示整数
注意:对sparse_binary_vector和sparse_float_vector,PaddlePaddle存的是有值位置的索引。例如,
- 对一个5维非序列的稀疏01向量
[0, 1, 1, 0, 0]
,类型是sparse_binary_vector,返回的是[1, 2]
。(因为只有第1位和第2位有值) - 对一个5维非序列的稀疏浮点向量
[0, 0.5, 0.7, 0, 0]
,类型是sparse_float_vector,返回的是[(1, 0.5), (2, 0.7)]
。(因为只有第一位和第二位有值,分别是0.5和0.7)
PaddlePaddle的数据读取方式
我们了解了上文的四种基本数据格式和三种序列模式后,在处理自己的数据时可以根据需求选择,但是处理完数据后如何把数据放到模型里去训练呢?我们知道,基本的方法一般有两种:
- 一次性加载到内存:模型训练时直接从内存中取数据,不需要大量的IO消耗,速度快,适合少量数据。
- 加载到磁盘/HDFS/共享存储等:这样不用占用内存空间,在处理大量数据时一般采取这种方式,但是缺点是每次数据加载进来也是一次IO的开销,非常影响速度。
在PaddlePaddle中我们可以有三种模式来读取数据:分别是reader、reader creator和reader decorator,这三者有什么区别呢?
reader:从本地、网络、分布式文件系统HDFS等读取数据,也可随机生成数据,并返回一个或多个数据项。
reader creator:一个返回reader的函数。
reader decorator:装饰器,可组合一个或多个reader。
reader
我们先以reader为例,为房价数据(斯坦福吴恩达的公开课第一课举例的数据)创建一个reader:
- 创建一个reader,实质上是一个迭代器,每次返回一条数据(此处以房价数据为例)
reader = paddle.dataset.uci_housing.train()
2. 创建一个shuffle_reader,把上一步的reader放进去,配置buf_size就可以读取buf_size大小的数据自动做shuffle,让数据打乱,随机化
shuffle_reader = paddle.reader.shuffle(reader,buf_size= 100)
3.创建一个batch_reader,把上一步混洗好的shuffle_reader放进去,给定batch_size,即可创建。
batch_reader = paddle.batch(shuffle_reader,batch_size = 2)
这三种方式也可以组合起来放一块:
reader = paddle.batch(
paddle.reader.shuffle(
uci_housing.train(),
buf_size = 100),
batch_size=2)
可以以一个直观的图来表示:
从图中可以看到,我们可以直接从原始数据集里拿去数据,用reader读取,一条条灌倒shuffle_reader里,在本地随机化,把数据打乱,做shuffle,然后把shuffle后的数据,一个batch一个batch的形式,批量的放到训练器里去进行每一步的迭代和训练。 流程简单,而且只需要使用一行代码即可实现整个过程。
reader creator
如果想要生成一个简单的随机数据,以reader creator为例:
def reader_creator():
def reader():
while True:
yield numpy.random.uniform(-1,1,size=784)
return reader
源码见creator.py, 支持四种格式:np_array,text_file,RecordIO和cloud_reader
__all__ = ['np_array', 'text_file', "cloud_reader"] def np_array(x):
"""
Creates a reader that yields elements of x, if it is a
numpy vector. Or rows of x, if it is a numpy matrix.
Or any sub-hyperplane indexed by the highest dimension.
:param x: the numpy array to create reader from.
:returns: data reader created from x.
""" def reader():
if x.ndim < 1:
yield x for e in x:
yield e return reader def text_file(path):
"""
Creates a data reader that outputs text line by line from given text file.
Trailing new line ('\\\\n') of each line will be removed.
:path: path of the text file.
:returns: data reader of text file
""" def reader():
f = open(path, "r")
for l in f:
yield l.rstrip('\n')
f.close() return reader def recordio(paths, buf_size=100):
"""
Creates a data reader from given RecordIO file paths separated by ",",
glob pattern is supported.
:path: path of recordio files, can be a string or a string list.
:returns: data reader of recordio files.
""" import recordio as rec
import paddle.v2.reader.decorator as dec
import cPickle as pickle def reader():
if isinstance(paths, basestring):
path = paths
else:
path = ",".join(paths)
f = rec.reader(path)
while True:
r = f.read()
if r is None:
break
yield pickle.loads(r)
f.close() return dec.buffered(reader, buf_size) pass_num = 0 def cloud_reader(paths, etcd_endpoints, timeout_sec=5, buf_size=64):
"""
Create a data reader that yield a record one by one from
the paths:
:paths: path of recordio files, can be a string or a string list.
:etcd_endpoints: the endpoints for etcd cluster
:returns: data reader of recordio files.
.. code-block:: python
from paddle.v2.reader.creator import cloud_reader
etcd_endpoints = "http://127.0.0.1:2379"
trainer.train.(
reader=cloud_reader(["/work/dataset/uci_housing/uci_housing*"], etcd_endpoints),
)
"""
import os
import cPickle as pickle
import paddle.v2.master as master
c = master.client(etcd_endpoints, timeout_sec, buf_size) if isinstance(paths, basestring):
path = [paths]
else:
path = paths
c.set_dataset(path) def reader():
global pass_num
c.paddle_start_get_records(pass_num)
pass_num += 1 while True:
r, e = c.next_record()
if not r:
if e != -2:
print "get record error: ", e
break
yield pickle.loads(r) return reader
reader decorator
如果想要读取同时读取两部分的数据,那么可以定义两个reader,合并后对其进行shuffle。如我想读取所有用户对比车系的数据和浏览车系的数据,可以定义两个reader,分别为contrast()和view(),然后通过预定义的reader decorator缓存并组合这些数据,在对合并后的数据进行乱序操作。源码见decorator.py
data = paddle.reader.shuffle(
paddle.reader.compose(
paddle.reader(contradt(contrast_path),buf_size = 100),
paddle.reader(view(view_path),buf_size = 200),
500)
这样有一个很大的好处,就是组合特征来训练变得更容易了!传统的跑模型的方法是,确定label和feature,尽可能多的找合适的feature扔到模型里去训练,这样我们就需要做一张大表,训练完后我们可以分析某些特征的重要性然后重新增加或减少一些feature来进行训练,这样我们有需要对原来的label-feature表进行修改,如果数据量小没啥影响,就是麻烦点,但是数据量大的话需要每一次增加feature,和主键、label来join的操作都会很耗时,如果采取这种方式的话,我们可以对某些同一类的特征做成一张表,数据存放的地址存为一个变量名,每次跑模型的时候想选取几类特征,就创建几个reader,用reader decorator 组合起来,最后再shuffle灌倒模型里去训练。这!样!是!不!是!很!方!便!
如果没理解,我举一个实例,假设我们要预测用户是否会买车,label是买车 or 不买车,feature有浏览车系、对比车系、关注车系的功能偏好等等20个,传统的思维是做成这样一张表:
如果想要减少feature_2,看看feature_2对模型的准确率影响是否很大,那么我们需要在这张表里去掉这一列,想要增加一个feature的话,也需要在feature里增加一列,如果用reador decorator的话,我们可以这样做数据集:
把相同类型的feature放在一起,不用频繁的join减少时间,一共做四个表,创建4个reador:
data = paddle.reader.shuffle(
paddle.reader.compose(
paddle.reader(table1(table1_path),buf_size = 100),
paddle.reader(table2(table2_path),buf_size = 100),
paddle.reader(table3(table3_path),buf_size = 100),
paddle.reader(table4(table4_path),buf_size = 100),
500)
如果新发现了一个特征,想尝试这个特征对模型提高准确率有没有用,可以再单独把这个特征数据提取出来,再增加一个reader,用reader decorator组合起来,shuffle后放入模型里跑就行了。
PaddlePaddle的数据预处理实例
还是以手写数字为例,对数据进行处理后并划分train和test,只需要4步即可:
- 指定数据地址
import paddle.v2.dataset.common
import subprocess
import numpy
import platform
__all__ = ['train', 'test', 'convert'] URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
2.创建reader creator
def reader_creator(image_filename, label_filename, buffer_size):
# 创建一个reader
def reader():
if platform.system() == 'Darwin':
zcat_cmd = 'gzcat'
elif platform.system() == 'Linux':
zcat_cmd = 'zcat'
else:
raise NotImplementedError() m = subprocess.Popen([zcat_cmd, image_filename], stdout=subprocess.PIPE)
m.stdout.read(16) l = subprocess.Popen([zcat_cmd, label_filename], stdout=subprocess.PIPE)
l.stdout.read(8) try: # reader could be break.
while True:
labels = numpy.fromfile(
l.stdout, 'ubyte', count=buffer_size).astype("int") if labels.size != buffer_size:
break # numpy.fromfile returns empty slice after EOF. images = numpy.fromfile(
m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape(
(buffer_size, 28 * 28)).astype('float32') images = images / 255.0 * 2.0 - 1.0 for i in xrange(buffer_size):
yield images[i, :], int(labels[i])
finally:
m.terminate()
l.terminate() return reader
3.创建训练集和测试集
def train():
"""
创建mnsit的训练集 reader creator
返回一个reador creator,每个reader里的样本都是图片的像素值,在区间[0,1]内,label为0~9
返回:training reader creator
"""
return reader_creator(
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist',
TRAIN_IMAGE_MD5),
paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist',
TRAIN_LABEL_MD5), 100) def test():
"""
创建mnsit的测试集 reader creator
返回一个reador creator,每个reader里的样本都是图片的像素值,在区间[0,1]内,label为0~9
返回:testreader creator
"""
return reader_creator(
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist',
TEST_IMAGE_MD5),
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist',
TEST_LABEL_MD5), 100)
4.下载数据并转换成相应格式
def fetch():
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5)
paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5)
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist', TRAIN_LABEL_MD5) def convert(path):
"""
将数据格式转换为 recordio format
"""
paddle.v2.dataset.common.convert(path, train(), 1000, "minist_train")
paddle.v2.dataset.common.convert(path, test(), 1000, "minist_test")
如果想换成自己的训练数据,只需要按照步骤改成自己的数据地址,创建相应的reader creator(或者reader decorator)即可。
这是图像的例子,如果我们想训练一个文本模型,做一个情感分析,这个时候如何处理数据呢?步骤也很简单。
假设我们有一堆数据,每一行为一条样本,以 \t
分隔,第一列是类别标签,第二列是输入文本的内容,文本内容中的词语以空格分隔。以下是两条示例数据:
positive 今天终于试了自己理想的车 外观太骚气了 而且中控也很棒
negative 这台车好贵 而且还费油 性价比太低了
现在开始做数据预处理
1.创建reader
def train_reader(data_dir, word_dict, label_dict):
def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 0
lbl_col = 1 for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, label_dict[line_split[lbl_col]] return reader
返回类型为: paddle.data_type.integer_value_sequence
(词语在字典的序号)和 paddle.data_type.integer_value
(类别标签)
2.组合读取方式
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(train_data_dir, word_dict, lbl_dict),
buf_size=1000),
batch_size=batch_size)
完整的代码如下(加上了划分train和test部分):
import os def train_reader(data_dir, word_dict, label_dict):
"""
创建训练数据reader
:param data_dir: 数据地址.
:type data_dir: str
:param word_dict: 词典地址,
词典里必须有 "UNK" .
:type word_dict:python dict
:param label_dict: label 字典的地址
:type label_dict: Python dict
""" def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 1
lbl_col = 0 for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, label_dict[line_split[lbl_col]] return reader def test_reader(data_dir, word_dict):
"""
创建测试数据reader
:param data_dir: 数据地址.
:type data_dir: str
:param word_dict: 词典地址,
词典里必须有 "UNK" .
:type word_dict:python dict
""" def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 1 for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
if len(line_split) < word_col: continue
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, line_split[word_col] return reader
总结
这篇文章主要讲了在paddlepaddle里如何加载自己的数据集,转换成相应的格式,并划分train和test。我们在使用一个框架的时候通常会先去跑几个简单的demo,但是如果不用常见的demo的数据,自己做一个实际的项目,完整的跑通一个模型,这才代表我们掌握了这个框架的基本应用知识。跑一个模型第一步就是数据预处理,在paddlepaddle里,提供的方式非常简单,但是有很多优点:
- shuffle数据非常方便
- 可以将数据组合成batch训练
- 可以利用reader decorator来组合多个reader,提高组合特征运行模型的效率
- 可以多线程读取数据
而我之前使用过mxnet来训练车牌识别的模型,50w的图片数据想要一次训练是非常慢的,这样的话就有两个解决方法:一是批量训练,这一点大多数的框架都会有, 二是转换成mxnet特有的rec格式,提高读取效率,可以通过im2rec.py将图片转换,比较麻烦,如果是tesnorflow,也有相对应的特定格式tfrecord,这几种方式各有优劣,从易用性上,paddlepaddle是比较简单的。
这篇文章没有与上篇衔接起来,因为看到有好几封邮件都有问怎么自己加载数据训练,所以就决定插入一节先把这个写了。下篇文章我们接着讲CNN的进阶知识。下周见^_^!
参考文章:
1.官网说明:http://doc.paddlepaddle.org/develop/doc_cn/getstarted/concepts/use_concepts_cn.html
【深度学习系列】PaddlePaddle之数据预处理的更多相关文章
- Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)
理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...
- 【深度学习系列】关于PaddlePaddle的一些避“坑”技巧
最近除了工作以外,业余在参加Paddle的AI比赛,在用Paddle训练的过程中遇到了一些问题,并找到了解决方法,跟大家分享一下: PaddlePaddle的Anaconda的兼容问题 之前我是在服务 ...
- 【深度学习系列】PaddlePaddle垃圾邮件处理实战(二)
PaddlePaddle垃圾邮件处理实战(二) 前文回顾 在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度 ...
- 【深度学习系列2】Mariana DNN多GPU数据并行框架
[深度学习系列2]Mariana DNN多GPU数据并行框架 本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架. 深度神经网络( ...
- 【深度学习系列3】 Mariana CNN并行框架与图像识别
[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框 ...
- 深度学习系列 Part(3)
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网 ...
- 基于TensorFlow的深度学习系列教程 2——常量Constant
前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图.本篇则着重介绍和整理下Constant相关的内容. 基于TensorFlow的深度学习系列教程 1--Hell ...
- 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】
转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...
- 【深度学习系列】PaddlePaddle垃圾邮件处理实战(一)
PaddlePaddle垃圾邮件处理实战(一) 背景介绍 在我们日常生活中,经常会受到各种垃圾邮件,譬如来自商家的广告.打折促销信息.澳门博彩邮件.理财推广信息等,一般来说邮件客户端都会设置一定的 ...
随机推荐
- Digital Square 搜索
Digital Square Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- Android 实现UI设计
1. 计算屏幕高度,宽度代码(Activity中) DisplayMetrics outMetrics = new DisplayMetrics(); getWindowManager().getDe ...
- C#泛型基础知识点总结
1.0 什么是泛型 泛型是C#2.0和CLR(公共语言运行时)升级的一个新特性,泛型为.NET 框架引入了一个叫 type parameters(类型参数)的概念,type parameters 使 ...
- 【转】HTTP Header 详解
HTTP(HyperTextTransferProtocol)即超文本传输协议,目前网页传输的的通用协议.HTTP协议采用了请求/响应模型,浏览器或其他客户端发出请求,服务器给与响应.就整个网络资源传 ...
- Python之scrapy实例1
下文参考:http://www.jb51.net/article/57183.htm 个人也是稍加整理,修改其中的一些错误,这些错误与scrapy版本选择有关,个环境:Win7x64_SP1 + Py ...
- Angular和Spring Boot一起做个项目
引言 最近由于公司人员调整,我不得不去转去做前端,被迫用三周的时间学习Angular,同时需要做一个简单的Web聊天室.对于前端不一点感冒的我而言,其实还算一个不小的挑战.在三周的过程中,我遇到很多的 ...
- 扩展jquery.validate自定义验证,自定义提示,本地化
<!DOCTYPE html> <html> <head> <meta name="viewport" content="wid ...
- JS中的作用域以及全局变量的问题
一. JS中的作用域 1.全局变量:函数外声明的变量,称为全部变量 局部变量:函数内部使用var声明的变量,称为局部变量在JS中,只有函数作用域,没有块级作用域!!!也就是说,if/for等有{}的结 ...
- MySql5.7创建数据库与添加用户、删除用户及授权
MySql安装启动成功后(不会的可以查看上篇MySql5.7安装及配置),首先我们需要创建数据库,然后创建一个用户去操作这个数据库: 一.创建数据库 在MySql命令行中输入: create data ...
- 接口自动化测试方案PHP + mysql
接口测试在测试工作中是很常见的工作,但是在以往的接口测试工作中借助的一般是第三方插件.python开发的发送请求脚本.LR脚本.Jmeter脚本,之前也使用python开发了一套接口自动化测试系统,但 ...