pandas.DataFrame对象类型解析

df = pd.DataFrame([[1,"2",3,4],[5,"6",7,8]],columns=["a","b","c","d"])

method解析

1、add()方法:类似加法运算(相加的元素必须是同一对象的数据)

 |  add(self, other, axis='columns', level=None, fill_value=None)
| Addition of dataframe and other, element-wise (binary operator `add`).
|
| Equivalent to ``dataframe + other``, but with support to substitute a fill_value for
| missing data in one of the inputs.
|
| Parameters
| ----------
| other : Series, DataFrame, or constant
| axis : {0, 1, 'index', 'columns'}
| For Series input, axis to match Series index on
| level : int or name
| Broadcast across a level, matching Index values on the
| passed MultiIndex level
| fill_value : None or float value, default None
| Fill existing missing (NaN) values, and any new element needed for
| successful DataFrame alignment, with this value before computation.
| If data in both corresponding DataFrame locations is missing
| the result will be missing

pandas.DataFrame.add方法

example:

output:

2、aggregate()方法:可简写agg()方法

aggregate(self, func, axis=0, *args, **kwargs)
| Aggregate using one or more operations over the specified axis.
|
| .. versionadded:: 0.20.0
|
| Parameters
| ----------
| func : function, string, dictionary, or list of string/functions
| Function to use for aggregating the data. If a function, must either
| work when passed a DataFrame or when passed to DataFrame.apply. For
| a DataFrame, can pass a dict, if the keys are DataFrame column names.
|
| Accepted combinations are:
|
| - string function name.
| - function.
| - list of functions.
| - dict of column names -> functions (or list of functions).

pandas.DataFrame.aggregate方法

example:

#coding=utf-8
import pandas as pd
import numpy as np ds = pd.Series([11,"",13,14])
print ds,"\n" df = pd.DataFrame([[1,"",3,4],[5,"",7,8]],columns=["a","b","c","d"])
print df,"\n" print(df.agg(['sum', 'min']))
print(df.agg({"a":['sum', 'min']}))

output:

0    11
1 2
2 13
3 14
dtype: object a b c d
0 1 2 3 4
1 5 6 7 8 a b c d
sum 6 26 10 12
min 1 2 3 4
a
sum 6
min 1

常用的aggregation functions (`mean`, `median`, `prod`, `sum`, `std`,`var`)

mad(self, axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis
max(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object.If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.
mean(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis
median(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis
min(self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. memory_usage(self, index=True, deep=False)
Return the memory usage of each column in bytes.
merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None)
Merge DataFrame objects by performing a database-style join operation by columns or indexes.
align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None):
Align two objects on their axes with the specified join method for each axis Index
all(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs):
Return whether all elements are True over series or dataframe axis.
any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs):
Return whether any element is True over requested axis.
apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds):
Apply a function along an axis of the DataFrame.
applymap(self, func):
Apply a function to a Dataframe elementwise.This method applies a function that accepts and returns a scalarto every element of a DataFrame.
append(self, other, ignore_index=False, verify_integrity=False, sort=None):
Append rows of `other` to the end of this frame, returning a new object. Columns not in this frame are added as new columns.
assign(self, **kwargs):
Assign new columns to a DataFrame, returning a new object(a copy) with the new columns added to the original ones.Existing columns that are re-assigned will be overwritten.
insert(self, loc, column, value, allow_duplicates=False)
Insert column into DataFrame at specified location. combine(self, other, func, fill_value=None, overwrite=True):
Add two DataFrame objects and do not propagate NaN values, so if for a(column, time) one frame is missing a value, it will default to theother frame's value (which might be NaN as well)
count(self, axis=0, level=None, numeric_only=False):
Count non-NA cells for each column or row.
cov(self, min_periods=None):
Compute pairwise covariance of columns, excluding NA/null values.
drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise'):
Drop specified labels from rows or columns.
drop_duplicates(self, subset=None, keep='first', inplace=False):
Return DataFrame with duplicate rows removed, optionally onlyconsidering certain columns
dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False)
Remove missing values.
duplicated(self, subset=None, keep='first')
Return boolean Series denoting duplicate rows, optionally onlyconsidering certain columns
eq(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods eq
eval(self, expr, inplace=False, **kwargs)
Evaluate a string describing operations on DataFrame columns.
fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
Fill NA/NaN values using the specified method
ge(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods ge
gt(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods gt
le(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods le
lt(self, other, axis='columns', level=None)
Wrapper for flexible comparison methods lt get_value(self, index, col, takeable=False)
Quickly retrieve single value at passed column and index
info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)
Print a concise summary of a DataFrame.
isin(self, values)
Return boolean DataFrame showing whether each element in theDataFrame is contained in values.
isna(self)
Detect missing values.Return a boolean same-sized object indicating if the values are NA.
isnull(self)
Detect missing values.Return a boolean same-sized object indicating if the values are NA.
iteritems(self)
Iterator over (column name, Series) pairs.
iterrows(self)
Iterate over DataFrame rows as (index, Series) pairs.
itertuples(self, index=True, name='Pandas')
Iterate over DataFrame rows as namedtuples, with index value as firstelement of the tuple.
join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False)
Join columns with other DataFrame either on index or on a keycolumn. Efficiently Join multiple DataFrame objects by index at once bypassing a list.

pandas.DataFrame对象解析的更多相关文章

  1. [Pandas技巧] 如何把pandas dataframe对象或series对象转换成list

    import pandas as pd >>> df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9], 'b':[3,5,6,2,4,6,7, ...

  2. 重拾Python(4):Pandas之DataFrame对象的使用

    Pandas有两大数据结构:Series和DataFrame,之前已对Series对象进行了介绍(链接),本文主要对DataFrame对象的常用用法进行总结梳理. 约定: import pandas ...

  3. 将pandas的Dataframe对象读写Excel文件

    Dataframe对象生成Excel文件 需要xlrd库  命令  pip install xlrd #导入pandas import pandas as pd import numpy as np ...

  4. pandas中DataFrame对象to_csv()方法中的encoding参数

    当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的enco ...

  5. pandas.DataFrame学习系列1——定义及属性

    定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是panda ...

  6. pandas DataFrame apply()函数(1)

    之前已经写过pandas DataFrame applymap()函数 还有pandas数组(pandas Series)-(5)apply方法自定义函数 pandas DataFrame 的 app ...

  7. python数据类型之pandas—DataFrame

    DataFrame定义: DataFrame是pandas的两个主要数据结构之一,另一个是Series —一个表格型的数据结构 —含有一组有序的列 —大致可看成共享同一个index的Series集合 ...

  8. 【338】Pandas.DataFrame

    Ref: Pandas Tutorial: DataFrames in Python Ref: pandas.DataFrame Ref: Pandas:DataFrame对象的基础操作 Ref: C ...

  9. pandas dataframe在指定的位置添加一列, 或者一次性添加几列,re

    相信有很多人收这个问题的困扰,如果你想一次性在pandas.DataFrame里添加几列,或者在指定的位置添加一列,都会很苦恼找不到简便的方法:可以用到的函数有df.reindex, pd.conca ...

随机推荐

  1. WinDbg常用命令系列---输入内存值的命令e*

    e, ea, eb, ed, eD, ef, ep, eq, eu, ew, eza (Enter Values) e*命令将您指定的值输入内存.不要将此命令与~e(Thread-Specific C ...

  2. pgloader 学习(六) 加载csv 数据

    关于加载的配置参数都是使用comand file command file 参考格式 LOAD CSV FROM 'GeoLiteCity-Blocks.csv' WITH ENCODING iso- ...

  3. 使用gitstats分析git 仓库代码

    gitstats 是一个很不错的git 代码提交分析工具,可以帮助我们生成图表统计结果 工具文档信息 gitstats http://gitstats.sourceforge.net/ 安装 使用ce ...

  4. snmp-get

    使用mibbroser可以连接到监控主机,可以获取主机mib信息 使用walk出的oid就可以获取到对应的值, 使用 -O fn 可以将返回的字符创形式的键改为数字型oid oid还有一种字符串的形式 ...

  5. javascript 之正则表达式匹配不包含特定字符串的字符

    如:有如下字符串,想查出不包含min.js的字符串  ['xx.min.js','xx.js','x.js','x.min.js'] 方法一: 使用逻辑非判断, !/min\.js/.test(str ...

  6. javascript根据两点和底角,计算等腰三角形的顶点坐标

    参考图: 代码如下: var x1 = 0; var y1 = 100; var x2 = -100; var y2 = 0; var angle = 30; var PI = Math.PI; // ...

  7. 图解LinkedHashMap原理

    1 前言 LinkedHashMap继承于HashMap,如果对HashMap原理还不清楚的同学,请先看上一篇:图解HashMap原理 2 LinkedHashMap使用与实现 先来一张LinkedH ...

  8. ICEM-空心圆柱体

    原视频下载地址:https://pan.baidu.com/s/1boG49MB 密码: 4iq6

  9. 【大数据应用技术】作业十一|分布式并行计算MapReduce

    本次作业在要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3319  1.用自己的话阐明Hadoop平台上HDFS和MapRe ...

  10. SDM439平台出现部分机型SD卡不能识别mmc1: error -110 whilst initialising SD card【学习笔记】

    SDM439平台出现部分机型SD卡不能识别mmc1: error -110 whilst initialising SD card 打印了如下的log: - ::>[ after ms - :: ...