UVALive 5713 Qin Shi Huang's National Road System(次小生成树)
题意:对于已知的网络构建道路,使城市两两之间能够互相到达。其中一条道路是可以免费修建的,问需要修建的总长度B与免费修建的道路所连接的两城市的人口之和A的比值A/B最大是多少。
因为是求A/B的最大值,自然A越大,B越小越好。B的最小值是可以用最小生成树算法求解的,但是,由于免费修建一条道路,使得B值<最小生成树的权值和cnt。
于是,就要考虑究竟选择哪条边作为免费修建?只考虑生成树上的边还是全部边都要考虑?仔细想一下,就会发现任何一条边都存在这样的可能性。而A/B的值同时收A、B的影响,即B可以稍微大一点,只要A增大的倍数更大,那么A/B就会出现一个更优解。
至此,选择枚举每一条边(u,v)作为可能免费修建的边。当然,若它在最小生成树上,那么B==cnt-边权;若它不在最小生成树上,那么加上该条边相当于在树形结构上构造了一个环,那么减去环上任何一条边(当然不能是新加的这条边),又构成一棵树。当删除的是原树上u,v两点唯一路径上权值最大的一条边时,这棵树就是对应于所加的边(u,v)的“次小生成树”(这里的次小不是真正的次小)。为什么一定是当前次小呢?由kruskal算法可知,这是通过贪心构造出的一棵树,新加上的边必然是环上的最大值(否则就不会是最小生成树了),而不在环上的边可以保证最小,所以通过如上构造,得到了一棵确定选择边(u,v)后的最小生成树,也是原图的一颗次小生成树(究竟是不是真的是次小,要比较完全部的“次小生成树”才能得到,并且注意次小生成树不唯一)。
用prim算法实现,记录(u,v)两两之间的路径上的最大值:每次记录即将加入生成树的点v与已加入的点之间的最大值,f[v]=max{f[u],w(u,v)},u是v的父亲。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<algorithm>
#define clr(a,m) memset(a,m,sizeof(a))
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std; const int MAXN=;
const double INF =1e9; struct Point{
int c;
double x,y;
}p[MAXN]; double mp[MAXN][MAXN],f[MAXN][MAXN]; double d[MAXN];
int vis[MAXN],fa[MAXN]; double prim(int n)
{
vector<int>q;
double cnt=; clr(vis,);
rep(i,,n)
d[i]=INF;
d[]=;
fa[]=;
rep(i,,n){
int x;
double m=INF;
rep(y,,n)
if(!vis[y]&&d[y]<m)
m=d[x=y];
vis[x]=true;
cnt+=mp[fa[x]][x]; int sz=q.size();
rep(j,,sz-){
f[q[j]][x]=f[x][q[j]]=max(f[q[j]][fa[x]],mp[fa[x]][x]);
}
q.push_back(x); rep(y,,n)
if(!vis[y]&&mp[x][y]<d[y]){
d[y]=mp[x][y];
fa[y]=x;
}
}
return cnt;
} void print(int n,double cnt)
{
double m=;
rep(i,,n)
rep(j,i+,n){
double s=cnt-f[i][j];
double t=p[i].c+p[j].c;
m=max(m,t/s);
}
printf("%.2f\n",m);
} int main()
{
int T,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
rep(i,,n)
scanf("%lf%lf%d",&p[i].x,&p[i].y,&p[i].c);
rep(i,,n){
mp[i][i]=;
rep(j,i+,n)
mp[i][j]=mp[j][i]=sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
}
double cnt=prim(n);
print(n,cnt);
}
return ;
}
UVALive 5713 Qin Shi Huang's National Road System(次小生成树)的更多相关文章
- UValive 5713 Qin Shi Huang's National Road System
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System Qin Shi Huang's National Road System Time Limit: 2000/1000 M ...
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...
- UVALive 5713 Qin Shi Huang's National Road System秦始皇修路(MST,最小瓶颈路)
题意: 秦始皇要在n个城市之间修路,而徐福声可以用法术位秦始皇免费修1条路,每个城市还有人口数,现要求徐福声所修之路的两城市的人口数之和A尽量大,而使n个城市互通需要修的路长B尽量短,从而使得A/B最 ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- hdu4081 Qin Shi Huang's National Road System 次小生成树
先发发牢骚:图论500题上说这题是最小生成树+DFS,网上搜题解也有人这么做.但是其实就是次小生成树.次小生成树完全当模版题.其中有一个小细节没注意,导致我几个小时一直在找错.有了模版要会用模版,然后 ...
- uvalive 5731 Qin Shi Huang’s National Road System
题意: 秦始皇要修路使得所有的城市连起来,并且花费最少:有一个人,叫徐福,他可以修一条魔法路,不花费任何的钱与劳动力. 秦始皇想让修路的费用最少,但是徐福想要受益的人最多,所以他们经过协商,决定让 A ...
- LA 5713 - Qin Shi Huang's National Road System(HDU 4081) MST
LA:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...
随机推荐
- HDU 2121 Ice_cream’s world II 不定根最小树形图
题目链接: 题目 Ice_cream's world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
- js函数:setInterval()/clearInterval()——js网页计时器
一.setInterval()/clearInterval()技术学习 都是window对象的方法,可以直接使用. setInterval(function(){},1000);:每1000毫秒执行一 ...
- How does database indexing work?
When data is stored on disk based storage devices, it is stored as blocks of data. These blocks are ...
- MYSQL存储过程中常使用的命令记录
MYSQL存储过程中常使用的命令记录 1.触发器trigger 查看:show triggers; 2.存储过程procedure 查看:show procedure status; 查看详细:sho ...
- C Primer Plus之高级数据表示
抽象数据类型(ADT) 类型是由什么组成?一个类型(type)指定两类信息:一个属性集和一个操作集. 所以您想定义一个新的数据类型.首先,您需要提供存储数据的方式,可能是通过设计一个结构.第二 ...
- struts2学习笔记(4)——数据类型转换
回过头来看昨天的那个例子. 在昨天的例子中,只转换了一个Point类,如果想转换多个Point类怎么办呢?在昨天的例子上面做一个小的修改. 首先在input.jsp页面中修改几个输入框. <s: ...
- Java学习笔记(二)UML基础
用例图:代表系统的一个功能模块,仅仅是系统功能的描述.用例图包括:用例.角色.角色和用例之间的关系以及系统内用例之间的关系. 类图:表示系统中包含哪些实体,各实体之间如何关联. 类图除了表示实体内部结 ...
- ASP.NET连接数据库并获取数据
关键词:连接对象的用法SqlConnection,SqlCommand,SqlDataAdapter *数据访问方式的写法 工具/原料 VS SQL SERVER 2012 R2 方法/步骤1: 1. ...
- windows下安装ubantu
首先声明我是一个linux大菜鸟,之所以学这个,一个是好玩,另外做DL的一些软件如Caffe要在这个平台上运行,所以没事就鼓捣鼓捣.linux是一种内核,市场上支持这种内核的操作系统有uban ...
- 【mysql的编程专题④】存储过程
类似函数,但是没有返回值,把sql进行封装,便于多次使用或多种应用程序共享使用.不能用在SQL语句中,只能使用CALL调用; 创建存储过程 语法 CREATE PROCEDURE sp_name ([ ...