SPOJ PGCD
今天做的一个很有成就感的题目,虽然经过我一个上午的痛苦挣扎,但是我觉得这个时间还是花的挺有意义的。
题目的意思是给你a和b两个数(范围是10^7),从1-a选一个数x,从1-b中间选择一个数,问你能选出来gcd(a,b)=素数 的方案数有多少?
这是一类典型的gcd统计问题,也是十分有代表性的一个题目。
首先看到这个题目的时候我也不知道如何入手呢,任何的想法都逃不过T的阴影。
后来去网上看了各路神牛的题解我才稍稍明白了过来呢。
这个题目主要用到的只是就是莫比乌斯反演(Mobius)。
其本质是容斥原理。
如果我们假设d是一个质数,那么题目要我们求的就是 Sigama( mobi[j]*(n/(d*j))*(m/(d*j)) );
这里也就把容斥原理体现得淋漓尽致了,什么意思呢?
我们可以这样理解,我们枚举所取的两个数的最小公倍数的情况,如果当前我们枚举的数为x,那么在它在第一个范围里面有a/x种选择;它在第二个范围里面有b/x种选择,显然对于当前,我们总共的选择数就有(a/x)*(b/x),然而,我们到底加上这个数还是减去这个数呢?首先如果x是一个质数的话,我们应该加上去,但是如果x是恰好由两个不同质数组成的话呢,我们就要减去这个数(显然一个质数的情况已经把两个质数的种类数加进去了,所以这次要把多余的减出来),这里我们就可以得到一个规律,如果把x分解成质数的连乘形式中不含有任何相同的项,那么如果质数的个数为奇数的话,应该加上这个情况数,如果为偶数的话就应该减去这个数。
讲到这里,你也许会认为这个题目可以引刃而解了,但是你看看数据你就会知道,,如果赤裸裸的算的话,时间复杂度是(n*log(n)),果断是不能承受的。(本题连(O(n))的时间复杂度都难以承受哦)。
于是我们不得不再想优化的办法呢。
刚刚说的是枚举所取得的gcd(质数),不如我们换一个思路想想,其实我们可以直接枚举(j*d),也就是质数的若干倍。
同上面容斥原理的分析法,我们根据(j*d)中间分解成质数连乘后,可以很迅速的得出前面的容斥系数(也就是要加上多少或者减去多少的那个数)。
由于j*d里面可以有很多个质数因子组成(设为k个),如果k为偶数,那么d可以是其中任何一个(即d可能有k种取法),这是剩下的因子的个数是奇数个,我们应该加上这个数,所以是正1,由于有k种取法,这是的容斥系数应该是正k;同理当k为奇数时,容斥系数为负k。
但是,如果j*d里面有恰好一个平方因子呢?这是我们的d只可能取那个平方因子的那个数(想想为什么?不然就为o啦),所以这里的容斥系数质可能为1或者-1哦。
对于其他的(多对平方因子),直接等于0。
有了这个想法,我们可以先预处理每个数对应的那个容斥系数,这样就加速啦。
优化到这里,我们离AC又进了一步。但是用这个算法一步步枚举j*d,然后求和,时间复杂度还是有O(n) ,无法通过。
我们要继续想点别的办法。
于是我们又回到求和的那个式子——Sigama( mobi[j]*(n/(d*j))*(m/(d*j)) );
我们可以看到,对于某些d*j,他们所对应的(n/(d*j))*(m/(d*j))的值是不变的,什么意思呢?
举个例子:8/3=8/4=2(向下整除),8/5=8/6=8/7=8/8=1;
于是我们又想,对于那种很大的n和m,他们这种情况会更加明显。
于是我们可以通过对mobi函数求一个前缀和,存入S数组,进行分块处理。
于是我们可以把对应值相同的所有d*j一起处理,由于对于一个被除数,它所对应的商不会太多,这样分块处理后就可以把时间复杂度减低到sqrt级别了。
这样的话就可以顺利的过了这个题目啦。
注:SPOJ卡常数已经到了无节操的境界,所以任何可以降低常数的方法都应该用上的。
下面上代码(部分参考):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdio>
#define ll long long
#define maxn 10000001
using namespace std; char cnt1[maxn],cnt2[maxn];//把字符当做整形,因为longlong的范围最多都只有64位,足够,而且这里运算快得多,有了这个优化时间直接减少至少15s。
int s[maxn]; void getprim()
{
int k;
s[1]=0;
for (int i=2; i<maxn; i++)
{
if (cnt1[i]==0)
{
for (int j=i; j<maxn; j+=i) cnt1[j]++;
//不用朴素的筛选素数的方法,直接用平方和立方的情况筛选,省时多了。
if (i<3165)
{
k=i*i;
for (int j=k; j<maxn; j+=k) cnt2[j]++;
}
if (i<217)
{
k=i*i*i;
for (int j=k; j<maxn; j+=k) cnt2[j]++;
}//这里只要考虑平方和立方,为什么?因为含有的i^2的数目等于2和大于2的容斥系数都是0,我们只要知道那个系数大于1就可以了,不必要知道具体是多少。这里减去了好多白花花的时间。
}
if (cnt2[i]==0) k=(cnt1[i]&1)?cnt1[i]:-cnt1[i];
else if (cnt2[i]==1) k=(cnt1[i]&1)?-1:1;
else k=0;//k为第i项的容斥系数值,但是我们只需要前缀和。
s[i]=k+s[i-1];
}
} int main()
{
getprim();
int n,m,cas,next,d1,d2;
llans;
scanf("%d",&cas);
while (cas--)
{
ans=0;
scanf("%d%d",&n,&m);
for (lli=2; i<=n && i<=m;)
{
d1=n/i,d2=m/i;
next=n/d1<m/d2?n/d1:m/d2;
ans+=(ll)(s[next]-s[i-1])*d1*d2;
i=next+1;//分块,跳到下一块的起点。
}
printf("%lld\n",ans);
} return 0;
}
SPOJ PGCD的更多相关文章
- SPOJ - PGCD Primes in GCD Table(莫比乌斯反演)
http://www.spoj.com/problems/PGCD/en/ 题意: 给出a,b区间,求该区间内满足gcd(x,y)=质数的个数. 思路: 设f(n)为 gcd(x,y)=p的个数,那么 ...
- SPOJ PGCD (mobius反演 + 分块)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 题意 :求满足gcd(i , j)是素数(1 &l ...
- SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...
- SPOJ PGCD(莫比乌斯反演)
传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...
- bzoj 2820 / SPOJ PGCD 莫比乌斯反演
那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...
- * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)
题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...
- 【HDU4947】GCD Array (莫比乌斯反演+树状数组)
BUPT2017 wintertraining(15) #5H HDU- 4947 题意 有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\ ...
- BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 5217 Solved: 1233 ...
- SPOJ DQUERY D-query(主席树)
题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...
随机推荐
- ubuntu下刻录优盘的命令
fdisk -l 找到优盘为/dev/sdb4 sudo dd if=/home/alex/Desktop/kali-linux-2016.1-amd64.iso of=/dev/sdb4
- echarts x轴文字换行显示
xAxis : [ { splitLine:{show:false}, type : 'category', data : ['社交人际','沟通交流','心理认知','游戏玩耍','大小运动','生 ...
- Ajax在Django中的应用
一.什么是Ajax AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语言与服务器进行异步交互,传 ...
- selenium自动化之处理浏览器警告弹窗
有的网站会弹出类似如下图的警告弹窗,你会发现这种弹窗在html源码中怎么也定位不到,接下来将介绍这种弹窗的处理方式. 其实这种弹窗是不属于html的元素的,他是属于浏览器自带的弹窗,所以用定位元素的方 ...
- 【CentOS】安装Docker教程
前提条件 Docker 运行在 CentOS 7 上,要求系统为64位.系统内核版本为 3.10 以上. Docker 运行在 CentOS-6.5 或更高的版本的 CentOS 上,要求系统为64位 ...
- Unity —— 通过鼠标点击控制物体移动
//ClickMove - - 通过鼠标点击控制物体移动 using System.Collections; using System.Collections.Generic; using Unity ...
- Mysql基础操作语句
SQL 简单的增删改查 不区分大小写, 表名和字段名可不加引号 查询语句 SELECT * FROM `table_name`; -- 注释 CTRL+/ : 注释 CTRL+/ : 取消注释 /* ...
- 【第二章】MySQL数据库基于Centos7.3-部署
一.MySQL数据库的官方网址: https://www.mysql.com/ https://www.oracle.com/ http://dev.mysql.com/doc/refman/5.7/ ...
- 【视频编解码·学习笔记】4. H.264的码流封装格式 & 提取NAL有效数据
一.码流封装格式简单介绍: H.264的语法元素进行编码后,生成的输出数据都封装为NAL Unit进行传递,多个NAL Unit的数据组合在一起形成总的输出码流.对于不同的应用场景,NAL规定了一种通 ...
- NO.1:自学python之路------Hello world、判断、循环
引言 人工智能如今越来越贴近生活,在这里将记录我自学python与tensorflow的过程.编程使用IDE:visual studio 2017,python版本3.6.4,tensorflow版本 ...