CH5702 Count The Repetitions[倍增dp]
给两个串,第一个循环写$n1$次,求第二个最多可以循环写多少次使得其能与第一个循环串非连续匹配。$s \leqslant 100,n \leqslant 10^6$
这个博客貌似鸽了许久了。。
可以想到朴素算法,就是拿第二个串去暴力匹配第一个串,第一个串匹配完了后面再补,直到补到其制限次数。或者用序列自动机?循环串循环次数太多了2333。
可以看出,朴素算法中的一步一步匹配显然效率低下,考虑可不可以向后匹配一次就跳很多格?先处理出原串每个字符和模式串对应上之后向后再匹配1个字符跳的步数,然后由于循环节不大,用倍增优化即可。
$f[i][j][k]$表示文本串第$i$位和模式串第$j$位对应,然后向后匹配成功了$2^k$个字符后跳到文本串什么位置(取模),$g[i][j][k]$表示产生这种行为后文本串会被向后拓展多少次。
设$i'=f[i][j][k-1],j'=(j+2^{k-1}-1)mod$ $len_{s2}+1$
则转移为$f[i][j][k-1]=f[i'][j'][k-1]$,$g[i][j][k]=g[i][j][k-1]+g[i'][j'][k-1]$。
事实上设两种状态表示麻烦了,完全可以用f表示匹配若干2次幂字符后跳到文本串拓展后的哪一位,反正循环次数再多下标也只在int范围内,g数组就可以直接不求而利用f得知了。
最后开始匹配,枚举指数,拼凑最多可以跳多少次,除以$len_{s2}$出答案。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define _dbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,LOG=;
vector<int> pos[];
int f[N][N][LOG],g[N][N][LOG],p[LOG];
char a[N],b[N];
int n1,n2,len1,len2,m,cnt,ans;
inline void calc_pow(){for(register int i=;i<=;++i)p[i]=(<<i)%len2;}
inline void Reset(){
for(register int i='a';i<='z';++i)pos[i].clear();
memset(f,,sizeof f),memset(g,,sizeof g);
}
inline char preprocess(){
int k,l;
for(register int i=;i<=len1;++i)pos[a[i]].push_back((int)i);
for(register int i=;i<=len2;++i)if(pos[b[i]].empty())return ;
for(register int j=;j<=len2;++j)
for(register int x=,i=pos[b[j]][];x<(int)pos[b[j]].size();++x,i=pos[b[j]][x]){
(k=j+)>len2?k=:k;
if(*--pos[b[k]].end()<=i)l=pos[b[k]][];else l=*upper_bound(pos[b[k]].begin(),pos[b[k]].end(),(int)i);
f[i][j][]=l,g[i][j][]=l<=i;
}
calc_pow();
for(register int k=;k<=m;++k)
for(register int j=;j<=len2;++j)
for(register int x=,i=pos[b[j]][];x<(int)pos[b[j]].size();++x,i=pos[b[j]][x])
if(f[i][j][]){
int i0=f[i][j][k-],j0=j+p[k-]-;j0>=len2&&(j0-=len2);++j0;
f[i][j][k]=f[i0][j0][k-],g[i][j][k]=g[i][j][k-]+g[i0][j0][k-];
}
return ;
} int main(){//freopen("test.in","r",stdin);freopen("test.out","w",stdout);
while(~scanf("%s%d",b+,&n2)){
scanf("%s%d",a+,&n1);
len1=strlen(a+),len2=strlen(b+);
m=__lg(n1*len1);Reset();
if(preprocess()){printf("0\n");continue;}
int x=pos[b[]][],y=;cnt=,ans=;
for(register int i=m;~i;--i){
if(cnt+g[x][y][i]<=n1){
cnt+=g[x][y][i],ans+=(<<i);
x=f[x][y][i];
y+=p[i]-;y>=len2&&(y-=len2);++y;
}
}
printf("%d\n",ans/len2/n2);
}
return ;
}
等一下。。我傻掉了。状态还可优化。将f改为$f[i][k]$表示从$i$开始匹配模式串(不管$i$自己有没有匹配上,简化了我原来强制要与$j$对应开始匹配的条件),至少匹配多少个字符才可以匹配出$2^k$个模式串。这样暴力预处理匹配单串之后,进行转移。空间和时间上都省了很多很多。→这种方法参考自lyd书。果然菜是原罪。QwQ
CH5702 Count The Repetitions[倍增dp]的更多相关文章
- 第七周 Leetcode 466. Count The Repetitions 倍增DP (HARD)
Leetcode 466 直接给出DP方程 dp[i][k]=dp[i][k-1]+dp[(i+dp[i][k-1])%len1][k-1]; dp[i][k]表示从字符串s1的第i位开始匹配2^k个 ...
- CH5702 Count The Repetitions
题意 5702 Count The Repetitions 0x50「动态规划」例题 描述 定义 conn(s,n) 为 n 个字符串 s 首尾相接形成的字符串,例如: conn("abc& ...
- Codeforces 1140G Double Tree 倍增 + dp
刚开始, 我以为两个点肯定是通过树上最短路径过去的, 无非是在两棵树之间来回切换, 这个可以用倍增 + dp 去维护它. 但是后来又发现, 它可以不通过树上最短路径过去, 我们考虑这样一种情况, 起点 ...
- zoj 3649 lca与倍增dp
参考:http://www.xuebuyuan.com/609502.html 先说题意: 给出一幅图,求最大生成树,并在这棵树上进行查询操作:给出两个结点编号x和y,求从x到y的路径上,由每个结点的 ...
- 洛谷 P1613 跑路 (倍增 + DP + 最短路)
题目链接:P1613 跑路 题意 给定包含 \(n\) 个点和 \(m\) 条边的有向图,每条边的长度为 \(1\) 千米.每秒钟可以跑 \(2^k\) 千米,问从点 \(1\) 到点 \(n\) 最 ...
- 【BZOJ-1833】count数字计数 数位DP
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2494 Solved: 1101[Submit][ ...
- CF451D Count Good Substrings (DP)
Codeforces Round #258 (Div. 2) Count Good Substrings D. Count Good Substrings time limit per test 2 ...
- hdu 3336 Count the string KMP+DP优化
Count the string Problem Description It is well known that AekdyCoin is good at string problems as w ...
- uva 10712 - Count the Numbers(数位dp)
题目链接:uva 10712 - Count the Numbers 题目大意:给出n,a.b.问说在a到b之间有多少个n. 解题思路:数位dp.dp[i][j][x][y]表示第i位为j的时候.x是 ...
随机推荐
- 寻找最大(小)的K个数
<<编程之美>>一书中提到了寻找最大的K个数的问题,问题可以简单描述为:在长度为N的数组中,寻找第K(K<N)个最大的数.问题的解法涉及到了很多排序算法,对我们理解和运用 ...
- Eclipse运行错误:Failed to load the JNI shared library的解决办法
出现上述错误的原因是环境变量配置出问题,查看JAVA_HOME这一环境变量的值是否正确. 操作步骤如下, 1.右键“我的电脑”->属性 ↓ 2.打开“高级系统设置”,如下图: ↓ 3.选择“环境 ...
- 实用篇如何使用github(本地、远程)满足基本需求
一.结构: |--工作区 |--版本库 |--stage——add,可以每个添加到暂存区 |--master——commit 一次性提交到版本库 ...
- pdoModel封装
<?php /** * Created by PhpStorm. * User: Administrator * Date: 2017/7/24 * Time: 14:03 */ /** * 数 ...
- HTML5_CSS3实现iOS Path菜单
在线演示 本地下载
- php数组函数-array_map()
array_map()函数返回用户自定义函数作用后的数组.回调函数接受的参数 数目应该和传递给array_map()函数的数组数目一直. array_map(function,array1,array ...
- 20145240 《Java程序设计》第五次实验报告
20145240 <Java程序设计>第五次实验报告 北京电子科技学院(BESTI)实验报告 课程:Java程序设计 班级:1452 指导教师:娄嘉鹏 实验日期:2016.05.06 实验 ...
- Linux 多线程编程实例
一.多线程 VS 多进程 和进程相比,线程有很多优势.在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护代码段和数据.而运行于一个进程中的多个线程,他们之间使用相同 ...
- linux下bwa和samtools的安装与使用
bwa的安装流程安装本软体总共需要完成以下两个软体的安装工作:1) BWA2) Samtools 1.BWA的安装a.下载BWA (download from BWA Source Forge ) h ...
- 【bzoj2423】最长公共子序列[HAOI2010](dp)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...