(本文假设你已经知道了hard margin SVM的基本知识.)
如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep learning打败. 但这个打败也仅仅是在Computer Vision 领域. 可以说对现在的AI研究来说, 第一火的算法当属deep learning. 第二火的仍是SVM. 单纯的SVM是一个线性分类器, 能解决的问题不多. 是kernel methods为SVM插上了一双隐形的翅膀, 让它能翱翔于AI研究的天空, 因为kernel methods可以将线性SVM变成非线性的.

问题描述

  • 给定:

    • 一个training set \(D\), 由\(m\)个二元组\((x_i, y_i)\)组成.

      • \(x_i\)是一个\(d\)维列向量, \(x_i \in R^d\)
      • \(y_i = \pm 1\), 代表\(x_i\)所属类别
      • \(i \in [1, m]\)
    • 一个kernel function \(kappa\)
  • 目标: 用D训练一个kernel svm分类器, 判断测试样本\(x \notin D\)的类别\(y\)

目标函数

假设\(\kappa\)对应的feature mapping function为\(\Phi\), 那么\(\Phi(x)\)将\(x\)从原始输入空间\(\chi:R^d\)映射到一个线性可分的特征空间\(H:R^n\). 这时用SVM对新得到的训练数据\((\Phi(x_i), y_i)\)进行线性分类.
SVM的优化目标是maximum margin. 这个margin是指正负两类decision boundaries的距离.
两个decision boundaries的方程为:
\[
w^T \Phi(x) + b = \pm 1
\]
它们的距离为:
\[
margin = \frac {2}{||w||}
\]
最大化\(d\)的值就是最小化\(||w||\)的值, 所以SVM的优化目标又可以写为:
\[
minimize : J(w) = \frac 12 w^T w
\]
因为需要正确分类所有的training data, 所以需要满足的约束条件为:
\[
y_i(w^T \Phi(x_i) + b) \ge 1, \forall i\in[1,m]
\]

对偶问题

上述优化问题的Lagrange multipliers function为:
\[
J(w, b, \alpha_1, \dots \alpha_m) = \frac 12 w^Tw - \sum_{i = 1}^m \alpha_i[y_i(w^T\Phi(x_i) + b) - 1], \alpha_i \ge 0
\]
它取得最小值的必要条件为
\[
\frac {\partial J}{\partial w} = w - \sum_{i = 1}^m \alpha_i y_i \Phi(x_i) = 0
\]
\[
\frac {\partial J}{\partial b} = \sum_{i = 1}^m \alpha_i y_i = 0
\]

\[
\to w = \sum_{i = 1}^m \alpha_i y_i \Phi(x_i) = Z^T \beta
\]
其中
\[
Z =
\left[
\begin{matrix}
\Phi(x_1)^T\\
\Phi(x_2)^T\\
\vdots \\
\Phi(x_m)^T
\end{matrix}
\right]
\qquad
\beta =
\left[
\begin{matrix}
\alpha_1y_1\\
\alpha_2y_2\\
\vdots \\
\alpha_my_m
\end{matrix}
\right]
\]

\(\to\)

\[
w^Tw = \beta^T Z Z^T \beta = \beta^TK\beta
\]

\[
w^T\Phi(x_i) = \beta^T Z \Phi(x_i) = \beta^T k_i^T = k_i\beta
\]
其中, \(K\)是kernel matrix, \(k_i\)是\(K\)的第\(i\)行.
代入 \(J(w, b, \alpha_1, \dots \alpha_m)\), 就得到了对偶问题:

\[maximumize: W(\alpha) = \sum_{i=1}^m \alpha_i + \frac 12 \beta^T K \beta - \sum_{i=1}^m \alpha_iy_ik_i\beta \]
\[ = \sum_{i=1}^m \alpha_i + \frac 12 \beta^T K \beta - \beta^T K \beta \]
\[ = \sum_{i=1}^m \alpha_i - \frac 12 \beta^T K \beta \]
\[ = \sum_{i=1}^m \alpha_i - \frac 12 \sum_{i=1}^m\sum_{j=1}^m \alpha_i\alpha_j y_i y_j \kappa(x_i, x_j) \]

它需要满足两个约束条件:
\((1)\sum_{i = 1}^m \alpha_i y_i = 0\)
\((2)\alpha_i \ge 0\)
可以解出\(W(\alpha)\)里包含的未知参数\(\alpha = (\alpha_1,\dots, \alpha_m)\).具体解法先略过.

得到\(w\)和\(b\)

\(\alpha\)已知后, 可以求得\(w\):
\[
w = \sum_{i = 1}^m \alpha_i y_i \Phi(x_i)
\]
现在就差\(b\)了. 如何求\(b\)呢? 现在回头想想SVM里的Support Vector的概念. 对于位于decision boudaries上的样本, 它们的\(y_i(w^T\Phi(x_i) + b) = 1\). 所以\(b\)可以根据支持向量, 即\(\alpha_i \neq 0\)对应的\(\Phi(x_i)\)来求得, 用\(\Phi(x_{sv})\)表示.
\[
b = y_{sv} - w^T\Phi(x_{sv}) = y_{sv} - \sum_{i = 1}^m \alpha_i y_i \Phi(x_i)^T \Phi(x_{sv}) = y_{sv} - \sum_{i=1}^m \alpha_i y_i \kappa(x_i, x_{sv})
\]
SV会存在多个, 理论上每个SV求出来的\(b\)应该是相等的. 但在现实情况中会存在计算误差, 所以一个更robust的做法是利用所有的SV求出各自的\(b\), 然后取平均值.
这个时候, \(w\)中还有\(\Phi\), 真实值是未知的, 但没关系. \(b\)则完全已知了.

预测新样本的类别

最后得到的SVM模型为
\[
y = sgn(w^T\Phi(x) + b) = sgn(\sum_{i = 1}^m \alpha_i y_i \Phi(x_i)\Phi(x) + b) = sgn(\sum_{i = 1}^m \alpha_i y_i \kappa(x_i, x) + b)
\]

Kernel Methods (4) Kernel SVM的更多相关文章

  1. Kernel Methods (2) Kernel function

    几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...

  2. Kernel Methods (5) Kernel PCA

    先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...

  3. Kernel Methods (3) Kernel Linear Regression

    Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x ...

  4. PRML读书会第六章 Kernel Methods(核函数,线性回归的Dual Representations,高斯过程 ,Gaussian Processes)

    主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢, ...

  5. Kernel Methods - An conclusion

    Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...

  6. 核方法(Kernel Methods)

    核方法(Kernel Methods) 支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面.对于非线性问题,则是通过引入核函数,对特征进行映射(通 ...

  7. Kernel Methods for Deep Learning

    目录 引 主要内容 与深度学习的联系 实验 Cho Y, Saul L K. Kernel Methods for Deep Learning[C]. neural information proce ...

  8. Kernel methods on spike train space for neuroscience: a tutorial

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...

  9. Kernel Methods (6) The Representer Theorem

    The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...

随机推荐

  1. bzoj-2243 2243: [SDOI2011]染色(树链剖分)

    题目链接: 2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6267  Solved: 2291 Descript ...

  2. SSH----MVC框架模式与分层架构

    MVC框架模式 MVC框架模式是web开发中一种软件设计典范,他的全名是(Model -View -Controller),是模型(model)--视图(view)--控制器(controller)的 ...

  3. ANE接入平台心得记录(安卓)

    开发环境:FlashBuilder4.7 AIR13.0 Eclipse 由于我懒得陪安卓的开发环境所以我下载了包含安卓SDK Manager的Eclipse,其实直接用FlashBuilder开发A ...

  4. accp7.0优化MySchool数据库设计内测笔试题总结

    1) 在SQL Server 中,为数据库表建立索引能够(C ). 索引:是SQL SERVER编排数据的内部方法,是检索表中数据的直接通道 建立索引的作用:大大提高了数据库的检索速度,改善数据库性能 ...

  5. [No000059]知道这些,你的时间会比别人多一大截

    大噶猴,这里是最近不爱断案,爱上了号脉问诊的包大人.来看看下面这些症状,你中了几条? 字的快餐阅读 2.微博.微信.QQ空间.微博.微信.QQ空间……陷在这样的循环里 3.每天好像接收了很多信息,然而 ...

  6. Android中实现如下多语言选择Radiobutton效果

    手边的samsung手机设置多语言的方式一般是点击设置多语言的一栏后进入到多语言选择界面,选择完成之后当前的语言环境用小字方式直接显示在设置多语言栏的下方.另一种选择多语言的方式如上图所示,我也在系统 ...

  7. javascript按回车键触发事件

    <form id="search-form" > <input type="text" onkeypress="getKey();r ...

  8. RPM方式编译升级centos内核

    [root@iZ2893wjzgyZ ~]# rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org [root@iZ2893wjzgyZ ...

  9. php加载xml编码错误,“Error: Input is not proper UTF-8, indicate encoding! ”

    最近在给php中解析xml的时候,抛出一个错误: "Warning: DOMDocument::load(): Input is not proper UTF-8, indicate enc ...

  10. C# Tostring 格式化输出字符串全解

    C 货币 2.5.ToString("C") ¥2.50 D 十进制数 .ToString("D5") E 科学型 .ToString("E" ...