F - Scout YYF I

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1- p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF
Each test case contains two lines. 
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step. 
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000

题意:

有一段路,路上有n个陷阱,每一次只能向前走一步或者两步,求安全走过这段路的改路

分析:

设dp[i]表示安全走过第i个陷阱的概率

那么dp[i+1]=dp[i]*(1-p(走到第i+1个陷阱))

因为每次只能走一步或者两步,所有安全走过第i个陷阱后的位置一定在a[i]+1;

其中a[i]表示第i个陷阱的位置

求从a[i]+1,走到a[i+1]的概率的时候我们需要用到矩阵来经行优化

ans[i]表示走到位置i的概率

ans[i] = p*ans[i-1]+(1-p)*ans[i-2];

ans[0]=1;

都说G++比C++要好,但是本题最好用C++提交。

如果用G++提交,浮点型输出一定要用%f,否则会WA。

这是因为G++标准的浮点型输出用%f,而不是%lf。

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <string.h>
using namespace std;
const int maxn=;
int cnt[maxn];
double dp[maxn];
double p;
int n;
struct matrix
{
double data[][];
};//定义成封装结构体 二维数组无法return
matrix I={,,,};
matrix multi(matrix a,matrix b)
{
matrix c;
memset(c.data,,sizeof(c.data));
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
c.data[i][j]+=a.data[i][k]*b.data[k][j];
return c;
}
double pow1(matrix a,int b)
{
matrix ans=I;
while(b)
{
if(b&)
ans=multi(ans,a);
b>>=;
a=multi(a,a);
}
return ans.data[][];
}
int main()
{
while(cin>>n>>p)
{
memset(dp,,sizeof(dp)); //该初始化的地方一定要初始化
cnt[]=; //为第一个雷做准备的
for(int i=;i<=n;i++)
cin>>cnt[i];
sort(cnt,cnt+n+);
dp[]=1.0; //不是0
matrix a={p,-p,,}; //初始化矩阵,注意这个的推导过程
for(int i=;i<=n;i++)
//要1减去这个概率 因为这个概率是踩上雷的
dp[i]=dp[i-]*(-pow1(a,cnt[i]-cnt[i-]-)); //注意不要丢括号
//注意是乘法不是加法 把每段概率乘起来
//注意是-1不是+1
//从上一个雷的下一个起 要走cnt[i]-cnt[i-1]-1步 才能到达下一个雷
//雷在1和5 从2走到5 需要3步 5-1-1=3
printf("%.7f\n",dp[n]);
}
return ;
}

poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)的更多相关文章

  1. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  2. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  3. poj 3744 Scout YYF I(概率dp,矩阵优化)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5020   Accepted: 1355 Descr ...

  4. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  5. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

  6. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  7. poj3744 (概率DP+矩阵快速幂)

    http://poj.org/problem?id=3744 题意:在一条铺满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,10000000 ...

  8. poj3744 Scout YYF I[概率dp+矩阵优化]

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8598   Accepted: 2521 Descr ...

  9. POJ 3744 Scout YYF I (概率dp+矩阵快速幂)

    题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...

随机推荐

  1. mysql8.0 忘记root密码

    先打开一个cmd:net stop mysql //关闭mysql服务mysqld --shared-memory --skip-grant-tables//跳过登录密码在不关闭第一个CMD的情况下打 ...

  2. 云心出岫——Splay Tree

    (多图预警!!!建议在WI-FI下观看) 之前我们谈论过AVL树,这是一种典型适度平衡的二叉搜索树,成立条件是保持平衡因子在[-1,1]的范围内,这个条件已经是针对理想平衡做出的一个妥协了,但依然显得 ...

  3. Android面试收集录7 AsyncTask详解

    1.Android中的线程 在操作系统中,线程是操作系统调度的最小单元,同时线程又是一种受限的系统资源,即线程不可能无限制地产生, 并且 **线程的创建和销毁都会有相应的开销.**当系统中存在大量的线 ...

  4. Win7更换锁屏和开机画面

    技术交流群:233513714 每次开机被Windows千年不变的开机画面和锁屏画面丑到的小伙伴们可以看过来,通过简单的几步就可以改掉系统默认的开机画面. 1.首先Windows+r键输入regedi ...

  5. 获取ubuntu中软件包的有用地址

    http://us.archive.ubuntu.com/ubuntu/pool/main/g/gettext/

  6. css深入理解relative

    第一讲     relative和absolute相煎关系 同源性 .position:relative .position:absolute 限制作用 1.限制left/top/right/bott ...

  7. SSM之秒杀系统

    利用idea搭建SSM框架,主要利用Maven仓库下载相应的jar包,以下是相关的pom.xml <project xmlns="http://maven.apache.org/POM ...

  8. PB常用事件

    1.window中的事件 事件名                  触发的时机 01.Activate            在窗口激活之前触发 02.Clicked             当用户用 ...

  9. JVM垃圾回收机制GC

    1. 垃圾回收的意义 在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象:而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾.JVM的 ...

  10. Scala 基础(5)—— 构建函数式对象

    有了 Scala 基础(4)—— 类和对象 的前提,现在就可以来构建一个基于 Scala 的函数式对象. 下面开始构造一个有理数对象 Rational. 1. 主构造方法和辅助构造方法 对于每一个类的 ...