poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)
Description
Input
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000
题意:
有一段路,路上有n个陷阱,每一次只能向前走一步或者两步,求安全走过这段路的改路
分析:
设dp[i]表示安全走过第i个陷阱的概率
那么dp[i+1]=dp[i]*(1-p(走到第i+1个陷阱))
因为每次只能走一步或者两步,所有安全走过第i个陷阱后的位置一定在a[i]+1;
其中a[i]表示第i个陷阱的位置
求从a[i]+1,走到a[i+1]的概率的时候我们需要用到矩阵来经行优化
ans[i]表示走到位置i的概率
ans[i] = p*ans[i-1]+(1-p)*ans[i-2];
ans[0]=1;
都说G++比C++要好,但是本题最好用C++提交。
如果用G++提交,浮点型输出一定要用%f,否则会WA。
这是因为G++标准的浮点型输出用%f,而不是%lf。
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <string.h>
using namespace std;
const int maxn=;
int cnt[maxn];
double dp[maxn];
double p;
int n;
struct matrix
{
double data[][];
};//定义成封装结构体 二维数组无法return
matrix I={,,,};
matrix multi(matrix a,matrix b)
{
matrix c;
memset(c.data,,sizeof(c.data));
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++)
c.data[i][j]+=a.data[i][k]*b.data[k][j];
return c;
}
double pow1(matrix a,int b)
{
matrix ans=I;
while(b)
{
if(b&)
ans=multi(ans,a);
b>>=;
a=multi(a,a);
}
return ans.data[][];
}
int main()
{
while(cin>>n>>p)
{
memset(dp,,sizeof(dp)); //该初始化的地方一定要初始化
cnt[]=; //为第一个雷做准备的
for(int i=;i<=n;i++)
cin>>cnt[i];
sort(cnt,cnt+n+);
dp[]=1.0; //不是0
matrix a={p,-p,,}; //初始化矩阵,注意这个的推导过程
for(int i=;i<=n;i++)
//要1减去这个概率 因为这个概率是踩上雷的
dp[i]=dp[i-]*(-pow1(a,cnt[i]-cnt[i-]-)); //注意不要丢括号
//注意是乘法不是加法 把每段概率乘起来
//注意是-1不是+1
//从上一个雷的下一个起 要走cnt[i]-cnt[i-1]-1步 才能到达下一个雷
//雷在1和5 从2走到5 需要3步 5-1-1=3
printf("%.7f\n",dp[n]);
}
return ;
}
poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)的更多相关文章
- POJ 3744 Scout YYF I 概率dp+矩阵快速幂
题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...
- POJ3744 Scout YYF I 概率DP+矩阵快速幂
http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...
- poj 3744 Scout YYF I(概率dp,矩阵优化)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5020 Accepted: 1355 Descr ...
- Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)
题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...
- poj4474 Scout YYF I(概率dp+矩阵快速幂)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4100 Accepted: 1051 Descr ...
- 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)
题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...
- poj3744 (概率DP+矩阵快速幂)
http://poj.org/problem?id=3744 题意:在一条铺满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,10000000 ...
- poj3744 Scout YYF I[概率dp+矩阵优化]
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8598 Accepted: 2521 Descr ...
- POJ 3744 Scout YYF I (概率dp+矩阵快速幂)
题意: 一条路上,给出n地雷的位置,人起始位置在1,向前走一步的概率p,走两步的概率1-p,踩到地雷就死了,求安全通过这条路的概率. 分析: 如果不考虑地雷的情况,dp[i],表示到达i位置的概率,d ...
随机推荐
- mysql8.0 忘记root密码
先打开一个cmd:net stop mysql //关闭mysql服务mysqld --shared-memory --skip-grant-tables//跳过登录密码在不关闭第一个CMD的情况下打 ...
- 云心出岫——Splay Tree
(多图预警!!!建议在WI-FI下观看) 之前我们谈论过AVL树,这是一种典型适度平衡的二叉搜索树,成立条件是保持平衡因子在[-1,1]的范围内,这个条件已经是针对理想平衡做出的一个妥协了,但依然显得 ...
- Android面试收集录7 AsyncTask详解
1.Android中的线程 在操作系统中,线程是操作系统调度的最小单元,同时线程又是一种受限的系统资源,即线程不可能无限制地产生, 并且 **线程的创建和销毁都会有相应的开销.**当系统中存在大量的线 ...
- Win7更换锁屏和开机画面
技术交流群:233513714 每次开机被Windows千年不变的开机画面和锁屏画面丑到的小伙伴们可以看过来,通过简单的几步就可以改掉系统默认的开机画面. 1.首先Windows+r键输入regedi ...
- 获取ubuntu中软件包的有用地址
http://us.archive.ubuntu.com/ubuntu/pool/main/g/gettext/
- css深入理解relative
第一讲 relative和absolute相煎关系 同源性 .position:relative .position:absolute 限制作用 1.限制left/top/right/bott ...
- SSM之秒杀系统
利用idea搭建SSM框架,主要利用Maven仓库下载相应的jar包,以下是相关的pom.xml <project xmlns="http://maven.apache.org/POM ...
- PB常用事件
1.window中的事件 事件名 触发的时机 01.Activate 在窗口激活之前触发 02.Clicked 当用户用 ...
- JVM垃圾回收机制GC
1. 垃圾回收的意义 在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象:而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾.JVM的 ...
- Scala 基础(5)—— 构建函数式对象
有了 Scala 基础(4)—— 类和对象 的前提,现在就可以来构建一个基于 Scala 的函数式对象. 下面开始构造一个有理数对象 Rational. 1. 主构造方法和辅助构造方法 对于每一个类的 ...