golang ----array and slice
Go Slices: usage and internals
Introduction
Go's slice type provides a convenient and efficient means of working with sequences of typed data. Slices are analogous to arrays in other languages, but have some unusual properties. This article will look at what slices are and how they are used.
Arrays
The slice type is an abstraction built on top of Go's array type, and so to understand slices we must first understand arrays.
An array type definition specifies a length and an element type. For example, the type [4]int
represents an array of four integers. An array's size is fixed; its length is part of its type ([4]int
and [5]int
are distinct, incompatible types). Arrays can be indexed in the usual way, so the expression s[n]
accesses the nth element, starting from zero.
var a [4]int
a[0] = 1
i := a[0]
// i == 1
Arrays do not need to be initialized explicitly; the zero value of an array is a ready-to-use array whose elements are themselves zeroed:
// a[2] == 0, the zero value of the int type
The in-memory representation of [4]int
is just four integer values laid out sequentially:
Go's arrays are values. An array variable denotes the entire array; it is not a pointer to the first array element (as would be the case in C). This means that when you assign or pass around an array value you will make a copy of its contents. (To avoid the copy you could pass a pointer to the array, but then that's a pointer to an array, not an array.) One way to think about arrays is as a sort of struct but with indexed rather than named fields: a fixed-size composite value.
An array literal can be specified like so:
b := [2]string{"Penn", "Teller"}
Or, you can have the compiler count the array elements for you:
b := [...]string{"Penn", "Teller"}
In both cases, the type of b
is [2]string
.
Slices
Arrays have their place, but they're a bit inflexible, so you don't see them too often in Go code. Slices, though, are everywhere. They build on arrays to provide great power and convenience.
The type specification for a slice is []T
, where T
is the type of the elements of the slice. Unlike an array type, a slice type has no specified length.
A slice literal is declared just like an array literal, except you leave out the element count:
letters := []string{"a", "b", "c", "d"}
A slice can be created with the built-in function called make
, which has the signature,
func make([]T, len, cap) []T
where T stands for the element type of the slice to be created. The make
function takes a type, a length, and an optional capacity. When called, make
allocates an array and returns a slice that refers to that array.
var s []byte
s = make([]byte, 5, 5)
// s == []byte{0, 0, 0, 0, 0}
When the capacity argument is omitted, it defaults to the specified length. Here's a more succinct version of the same code:
s := make([]byte, 5)
The length and capacity of a slice can be inspected using the built-in len
and cap
functions.
len(s) == 5
cap(s) == 5
The next two sections discuss the relationship between length and capacity.
The zero value of a slice is nil
. The len
and cap
functions will both return 0 for a nil slice.
A slice can also be formed by "slicing" an existing slice or array. Slicing is done by specifying a half-open range with two indices separated by a colon. For example, the expression b[1:4]
creates a slice including elements 1 through 3 of b
(the indices of the resulting slice will be 0 through 2).
b := []byte{'g', 'o', 'l', 'a', 'n', 'g'}
// b[1:4] == []byte{'o', 'l', 'a'}, sharing the same storage as b
The start and end indices of a slice expression are optional; they default to zero and the slice's length respectively:
// b[:2] == []byte{'g', 'o'}
// b[2:] == []byte{'l', 'a', 'n', 'g'}
// b[:] == b
This is also the syntax to create a slice given an array:
x := [3]string{"Лайка", "Белка", "Стрелка"}
s := x[:] // a slice referencing the storage of x
Slice internals
A slice is a descriptor of an array segment. It consists of a pointer to the array, the length of the segment, and its capacity (the maximum length of the segment).
Our variable s
, created earlier by make([]byte, 5)
, is structured like this:
The length is the number of elements referred to by the slice. The capacity is the number of elements in the underlying array (beginning at the element referred to by the slice pointer). The distinction between length and capacity will be made clear as we walk through the next few examples.
As we slice s
, observe the changes in the slice data structure and their relation to the underlying array:
s = s[2:4]
Slicing does not copy the slice's data. It creates a new slice value that points to the original array. This makes slice operations as efficient as manipulating array indices. Therefore, modifying the elements (not the slice itself) of a re-slice modifies the elements of the original slice:
d := []byte{'r', 'o', 'a', 'd'}
e := d[2:]
// e == []byte{'a', 'd'}
e[1] = 'm'
// e == []byte{'a', 'm'}
// d == []byte{'r', 'o', 'a', 'm'}
Earlier we sliced s
to a length shorter than its capacity. We can grow s to its capacity by slicing it again:
s = s[:cap(s)]
A slice cannot be grown beyond its capacity. Attempting to do so will cause a runtime panic, just as when indexing outside the bounds of a slice or array. Similarly, slices cannot be re-sliced below zero to access earlier elements in the array.
Growing slices (the copy and append functions)
To increase the capacity of a slice one must create a new, larger slice and copy the contents of the original slice into it. This technique is how dynamic array implementations from other languages work behind the scenes. The next example doubles the capacity of s
by making a new slice, t
, copying the contents of s
into t
, and then assigning the slice value t
to s
:
t := make([]byte, len(s), (cap(s)+1)*2) // +1 in case cap(s) == 0
for i := range s {
t[i] = s[i]
}
s = t
The looping piece of this common operation is made easier by the built-in copy function. As the name suggests, copy copies data from a source slice to a destination slice. It returns the number of elements copied.
func copy(dst, src []T) int
The copy
function supports copying between slices of different lengths (it will copy only up to the smaller number of elements). In addition, copy
can handle source and destination slices that share the same underlying array, handling overlapping slices correctly.
Using copy
, we can simplify the code snippet above:
t := make([]byte, len(s), (cap(s)+1)*2)
copy(t, s)
s = t
A common operation is to append data to the end of a slice. This function appends byte elements to a slice of bytes, growing the slice if necessary, and returns the updated slice value:
func AppendByte(slice []byte, data ...byte) []byte {
m := len(slice)
n := m + len(data)
if n > cap(slice) { // if necessary, reallocate
// allocate double what's needed, for future growth.
newSlice := make([]byte, (n+1)*2)
copy(newSlice, slice)
slice = newSlice
}
slice = slice[0:n]
copy(slice[m:n], data)
return slice
}
One could use AppendByte
like this:
p := []byte{2, 3, 5}
p = AppendByte(p, 7, 11, 13)
// p == []byte{2, 3, 5, 7, 11, 13}
Functions like AppendByte
are useful because they offer complete control over the way the slice is grown. Depending on the characteristics of the program, it may be desirable to allocate in smaller or larger chunks, or to put a ceiling on the size of a reallocation.
But most programs don't need complete control, so Go provides a built-in append
function that's good for most purposes; it has the signature
func append(s []T, x ...T) []T
The append
function appends the elements x
to the end of the slice s
, and grows the slice if a greater capacity is needed.
a := make([]int, 1)
// a == []int{0}
a = append(a, 1, 2, 3)
// a == []int{0, 1, 2, 3}
To append one slice to another, use ...
to expand the second argument to a list of arguments.
a := []string{"John", "Paul"}
b := []string{"George", "Ringo", "Pete"}
a = append(a, b...) // equivalent to "append(a, b[0], b[1], b[2])"
// a == []string{"John", "Paul", "George", "Ringo", "Pete"}
Since the zero value of a slice (nil
) acts like a zero-length slice, you can declare a slice variable and then append to it in a loop:
// Filter returns a new slice holding only
// the elements of s that satisfy fn()
func Filter(s []int, fn func(int) bool) []int {
var p []int // == nil
for _, v := range s {
if fn(v) {
p = append(p, v)
}
}
return p
}
A possible "gotcha"
As mentioned earlier, re-slicing a slice doesn't make a copy of the underlying array. The full array will be kept in memory until it is no longer referenced. Occasionally this can cause the program to hold all the data in memory when only a small piece of it is needed.
For example, this FindDigits
function loads a file into memory and searches it for the first group of consecutive numeric digits, returning them as a new slice.
var digitRegexp = regexp.MustCompile("[0-9]+") func FindDigits(filename string) []byte {
b, _ := ioutil.ReadFile(filename)
return digitRegexp.Find(b)
}
This code behaves as advertised, but the returned []byte
points into an array containing the entire file. Since the slice references the original array, as long as the slice is kept around the garbage collector can't release the array; the few useful bytes of the file keep the entire contents in memory.
To fix this problem one can copy the interesting data to a new slice before returning it:
func CopyDigits(filename string) []byte {
b, _ := ioutil.ReadFile(filename)
b = digitRegexp.Find(b)
c := make([]byte, len(b))
copy(c, b)
return c
}
A more concise version of this function could be constructed by using append
. This is left as an exercise for the reader.
Further Reading
Effective Go contains an in-depth treatment of slices and arrays, and the Go language specification defines slices and their associated helper functions.
golang ----array and slice的更多相关文章
- Golang高效实践之array、slice、map
前言 Golang的slice类型为连续同类型数据提供了一个方便并且高效的实现方式.slice的实现是基于array,slice和map一样是类似于指针语义,传递slice和map并不涉及底层数据结构 ...
- 【javascript 技巧】Array.prototype.slice的妙用
Array.prototype.slice的妙用 开门见山,关于Array 的slice的用法可以参考这里 http://www.w3school.com.cn/js/jsref_slice_arra ...
- Array.prototype.slice.call(arguments)
Array.prototype.slice.call(arguments)能够将具有length属性的对象转化为数组, 可以理解为将arguments转化成一个数组对象,让它具有slice方法 如: ...
- IE下Array.prototype.slice.call(params,0)
i8 不支持 Array.prototype.slice.call(params,0) params可以是 HTMLCollection.类数组.string字符串
- (转)Array.prototype.slice.call自解
很多框架或者库里面都会有这句的使用,最多的还是通过Array.prototype.slice.call(arguments,0)把arguments这个伪数组转换为真正的数组.但为什么可以这么做,却一 ...
- 详解 Array.prototype.slice.call(arguments)
首先,slice有两个用法,一个是String.slice,一个是Array.slice,第一个返回的是字符串,第二个返回的是数组 在这里我们看第二个方法 1.在JS里Array是一个类 slice是 ...
- Array.prototype.slice && Array.prototype.splice 用法阐述
目的 对于这两个数组操作接口,由于不理解, 往往被误用, 或者不知道如何使用.本文尝试给出容易理解的阐述. 数组 什么是数组? 数组是一个基本的数据结构, 是一个在内存中依照线性方式组织元素的方式, ...
- Array.prototype.slice.call(document.querySelectorAll('a'), 0)
Array.prototype.slice.call(document.querySelectorAll('a'), 0)的作用就是将一个DOM NodeList 转换成一个数组. slice()方法 ...
- Array.prototype.slice.call
Array.prototype.slice.call(arguments)能将具有length属性的对象转成数组 ,::'age'}; Array.prototype.slice.call(arr); ...
随机推荐
- python 检查站点是否可以访问
最近碰到系统有时候会访问不了,想写一个程序来检测站点是不是可以访问的功能,正好在学python,于是写了一个方法来练练手,直接上代码. import urllib.request import smt ...
- 深入理解Vue组件3大核心概念
摘要: 搞懂Vue组件! 作者:浪里行舟 原文:详解vue组件三大核心概念 Fundebug经授权转载,版权归原作者所有. 前言 本文主要介绍属性.事件和插槽这三个vue基础概念.使用方法及其容易被忽 ...
- 1.监控软件zabbix-入门
入门学习 首先要明白zabbix的读音(音同zæbix),主要进行网络相关的监控.它是一个基于WEB界面展示提供分布式系统监控的一款开源软件. zabbix有两部分:zabbix server和zab ...
- JOIN中的外连接(external join)
外连接: ---外连接并不要求连接的两表的每一条记录在对方表中都有一条匹配记录.要保留所有记录(甚至这条记录没有匹配的记录也要保留)的表成为保留表.外连接可以一句连接表保 留左表,右表和全部表的行二进 ...
- Golang 需要避免踩的 50 个坑(三)
前言 Go 是一门简单有趣的编程语言,与其他语言一样,在使用时不免会遇到很多坑,不过它们大多不是 Go 本身的设计缺陷.如果你刚从其他语言转到 Go,那这篇文章里的坑多半会踩到. 如果花时间学习官方 ...
- SMTP 与 IMAP
(SMTP)邮件传输协议 :电子邮件写好后,由网络传输时的建立在tcp协议基础之上的协议 (IMAP)邮件访问协议:邮件到达目的服务器后,用户从用户的pc ,移动端,等到 接收邮件服务器上去访问自己的 ...
- linux 中断底半部机制对比(任务队列,工作队列,软中断)--由linux RS485引出的血案【转】
转自:http://blog.chinaunix.net/uid-20768928-id-5077401.html 在LINUX RS485的使用过程中,由于各种原因,最后不得不使用中断底半部机制的方 ...
- linux设备驱动程序-设备树(2)-device_node转换成platform_device
设备树处理之--device_node转换成platform_device 以下讨论基于linux4.14,arm平台 platform device 设备树的产生就是为了替代driver中过多的pl ...
- 使用spring aop 记录接口日志
spring配置文件中增加启用aop的配置 <!-- 增加aop 自动代理配置 --> <aop:aspectj-autoproxy /> 切面类配置 package com. ...
- 【比赛游记】CSP2019游记
往期回顾:[比赛游记]NOIP2018游记 提高 D1: 密码 Ren2Zhen1Si0Kao9?. A B C 00:04 00:32 -5 \(100 + 100 + 0 = 200\) 因为提前 ...