Description

  大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

Input

第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n

Output

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

Sample Input

1 11
4 2

Sample Output

1

HINT

数据范围:
对于100%的数据,1 < = N , M < = 10000000

题解

首先显然在区间 $[1, M!]$ 内与 $M!$ 互素的数个数为 $\varphi(M!)$ 。

我们再考虑比 $M!$ 大的个数,值得注意的是我们存在这样一个性质:若 $x$ 与 $i$ (不)互质,则 $x+i$ 与 $i$ (不)互质。简要证明下:

现在我们证明对于整数 $x$ 若与 $i$ 互质,则 $x+i$ 也与 $i$ 互质。
采用反证法,我们假设 $gcd(x, i) = 1$ 但 $gcd(x+i, i) = b \neq 1$ 。
容易发现: \begin{cases} \begin{aligned} x+i = b\cdot k_1 \\ i = b \cdot k_2 \end{aligned} \end{cases} $k_1,k_2$ 均为整数。
所以 $x = (k_1-k_2)\cdot b$ ,故 $gcd(x, i) = b \neq 1$ ,与题设不符,原命题成立。
下证对于整数 $x$ 若与 $i$ 不互质,则 $x+i$ 也与 $i$ 不互质。
假设
$gcd(x, i) = b \neq 1$ , \begin{cases} \begin{aligned} x = b\cdot k_1
\\ i = b \cdot k_2 \end{aligned} \end{cases}$k_1,k_2$ 均为整数。
所以 $x+i = (k_1+k_2)\cdot b$ ,故 $gcd(x+i, i) = b \neq 1$ ,原命题成立。

故该题的答案

\begin{aligned} ans &= \varphi(M!) \cdot \frac{N!}{M!} \\ &= M! \cdot \prod_{p\mid M!,p~is~a~prime} \left( 1-\frac{1}{p} \right)\cdot \frac{N!}{M!} \\ &= N! \cdot \prod_{p\mid M!,p~is~a~prime}  \frac{p-1}{p} \end{aligned}

因为 $M!$ 素因数是连续的一段,所以我们只要统计 $[1, M!]$ 中的所有素数积的逆元,以及所有素数 $-1$ 的乘积即可。

ps:其实这道题是有 $bug$ 的,我们注意到用线性求逆元时求的数是不能大于等于模数的,而题面中并没有强调模数 $P$ 恒大于 $N$ 和 $M$ ,将错就做吧。

 //It is made by Awson on 2018.1.12
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
using namespace std;
const int N = 1e7;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(int x) {
if (x > ) write(x/);
putchar(x%+);
} int t, n, m, p, inv[N+], pro[N+];
int prime[N+], isprime[N+], tot, A[N+], B[N+]; void pre() {
pro[] = inv[] = ; for (int i = ; i <= N; i++) pro[i] = (LL)i*pro[i-]%p, inv[i] = -(LL)p/i*inv[p%i]%p;
for (int i = ; i <= N; i++) {
if (!isprime[i]) prime[++tot] = i;
for (int j = ; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = ; if (!(i%prime[j])) break;
}
}
A[] = B[] = , A[prime[]] = (prime[]-)%p, B[prime[]] = inv[prime[]]%p;
for (int i = ; i <= tot; i++) A[prime[i]] = (LL)A[prime[i-]]*(prime[i]-)%p, B[prime[i]] = (LL)B[prime[i-]]*inv[prime[i]]%p;
for (int i = ; i <= N; i++) {if (!A[i]) A[i] = A[i-]; if (!B[i]) B[i] = B[i-]; }
}
void work() {
read(t), read(p);
pre(); while (t--) {
read(n), read(m); write(((LL)pro[n]*A[m]%p*B[m]%p+p)%p); putchar('\n');
}
}
int main() {
work();
return ;
}

[SDOI 2008]沙拉公主的困惑的更多相关文章

  1. [BZOJ 2186] [SDOI 2008] 沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为 \(1\) 到 \(N\) 的阶乘,但是,政府只发行编号与 \(M!\) 互质的钞票.房地产第 ...

  2. BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...

  3. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  4. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  5. 【BZOJ2186】沙拉公主的困惑(数论)

    [BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...

  6. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  7. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  8. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  9. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

随机推荐

  1. hibernate框架学习错误集锦-org.springframework.dao.InvalidDataAccessApiUsageException: Write operations are not allowed in read-only mode (FlushMode.MANUAL)

    最近学习ssh框架,总是出现这问题,后查证是没有开启事务. 如果采用注解方式,直接在业务层加@Transactional 并引入import org.springframework.transacti ...

  2. python 进程复习

    import os import time ret = os.fork() # 创建子线程 if ret ==0: # 子进程中返回值为0,父进程>0 while True: print('.. ...

  3. 基础篇 - SQL 的约束

    基础篇 - SQL 的约束       约束 一.实验简介 约束是一种限制,它通过对表的行或列的数据做出限制,来确保表的数据的完整性.唯一性.本节实验将在实践操作中熟悉 MySQL 中的几种约束. 二 ...

  4. 手把手教你 LabVIEW 串口仪器控制——VISA 驱动下载安装篇

           仪器控制,核心在于 VISA 函数..有些仪器可能不需要 VISA,有自己的 DLL 什么的,我就管不着.        正常情况下,大家安装的 LabVIEW,都是不带 VISA 驱动 ...

  5. WingIDE5.*注册破解方法

    WingIDE是Python程序语言设计的集成开发环境,具有语法标签高亮显示,命令自动完成和函数跳转列表等非常强大的功能.本文主要介绍WingIDE 5安装及注册破解方法. 1. WingIDE 5下 ...

  6. Nginx在windows环境下的安装与简单配置

    版权声明:本文为博主原创文章,未经博主允许不得转载. 一. 下载并安装Nginx 去Nginx官网下载 我这里选取nginx/Windows-1.10.3版本,下载后解压出来即可,解压出来的路径不能含 ...

  7. signalR 消息推送

    业务情景一:上传报表,上传excel.如果excel的数据量很大,上万条,上十万条数据,那么这个上传请求必然是个耗时请求.用户上传之后,很关心上传的进度和结果. 业务情景二:站内消息提醒,实时有效地接 ...

  8. eclipse maven项目目录

    今天遇见一个错误,关于eclipse项目的路径问题,web-inf的路径,上图和下图出现了两种web-INF,src的web-INFf和webContent的web-INF,src里面的文件需要编译以 ...

  9. LeetCode & Q122-Best Time to Buy and Sell Stock II-Easy

    Description: Say you have an array for which the ith element is the price of a given stock on day i. ...

  10. Mego(2) - NET主流ORM框架分析

    接上文我们测试了各个ORM框架的性能,大家可以很直观的看到各个ORM框架与原生的ADO.NET在境删改查的性能差异.这里和大家分享下我对ORM框架的理解及一些使用经验. ORM框架工作原理 典型ORM ...